Journal articles
2025
Anica Hamer, Frank Vewinger, Michael H. Frosz, Simon Stellmer
Frequency conversion in a hydrogen-filled hollow-core fiber: power scaling, background, and bandwidth
2024
Jannik Zenner, Karl Ulrich Schreiber, Simon Stellmer
Stabilizing the free spectral range of a large ring laser
arXiv:2411.17422 2
Jonas Gottschalk, Simon Stellmer
Demystifying dust contamination in quantum optics labs: measurements and recommendations
arXiv:2409.18325 3
Anica Hamer, Frank Vewinger, Thorsten Peters, Michael H. Frosz, Simon Stellmer
Frequency conversion in a hydrogen-filled hollow-core fiber using continuous-wave fields
arXiv:2409.012464
Optics Letters 49, 6952 (2024)5
David Röser, Lukas Möller, Hans Keßler, Simon Stellmer
Isotope shift measurement of the 423-nm transition in neutral Ca
arXiv:2406.06806 6
Phys. Rev. A 110, 032809 (2024)7
Anica Hamer, Seyed Mahdi Razavi Tabar, Priyanka Yashwantrao, Alireza Aghababaei, Frank Vewinger, Simon Stellmer
Frequency conversion to the telecom O-band using pressurized hydrogen
arXiv:2401.10003 8
Optics Letters 49, 506 (2024) 9
David Röser, J. Eduardo Padilla-Castillo, Ben Ohayon, Russell Thomas, Stefan Truppe, Gerard Meijer, Simon Stellmer, Sid C. Wright
Hyperfine structure and isotope shifts of the 1P1 - 1S0 transition in atomic zinc
arXiv:2309.0366910
Phys. Rev. A 109, 012806 (2024)11
2023
Alireza Aghababaei, Christoph Biesek, Frank Vewinger, and Simon StellmerFrequency Conversion in High-Pressure Hydrogen
arXiv:2209.0729812
2022
Converting single photons from an InAs/GaAs quantum dot into the ultraviolet: preservation of second-order correlations
Optics Letters 47, 1778 (2022)14
Magneto-optical trapping of mercury atoms at high phase-space density
Phys. Rev. A 105, 033106 (2022)15
2021
A frequency-quintupled laser system for spectroscopy of intercombination lines in zinc
Applied Optics 60, 9915 (2021)16, arXiv:2103.11295 (2021)17
2020
Potential and scientific requirements of optical clock networks for validating satellite gravity missions
Geophysical Journal International 226, 764 (2021)18, arXiv:2012.02618 (2020) 19
Links
- https://arxiv.org/abs/2501.04049
- https://arxiv.org/abs/2411.17422
- https://arxiv.org/abs/2409.18325
- https://arxiv.org/abs/2409.01246
- https://opg.optica.org/ol/fulltext.cfm?uri=ol-49-24-6952&id=564949
- https://arxiv.org/abs/2406.06806
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.110.032809
- https://arxiv.org/abs/2401.10003
- https://opg.optica.org/ol/fulltext.cfm?uri=ol-49-3-506&id=545606
- https://arxiv.org/abs/2309.03669
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.109.012806
- https://arxiv.org/abs/2209.07298
- https://opg.optica.org/ol/fulltext.cfm?uri=ol-48-1-45&id=524397
- https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-7-1778&id=470845
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.033106
- https://opg.optica.org/ao/abstract.cfm?uri=ao-60-31-9915
- https://arxiv.org/abs/2103.11295
- https://academic.oup.com/gji/article-abstract/226/2/764/6212226
- https://arxiv.org/pdf/2012.02618.pdf