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We analyze the influence of disorder on the polaritonic bandstructure of metallic photonic crystal slabs.
Different disorder types with varying next-neighbor correlations and disorder amounts are implemented.
Angle-resolved transmission measurements allow to determine the relation of bandstructure and disorder. It
is found that uncorrelated disorder retains the bandstructure and only reduces the splitting between the gaps.
Correlated disorder, however, leads to the complete destruction of the bandstructure for moderate disorder
amounts due to the excitation of different modes. We present a model that shows a good agreement with the
measurements.
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1 Introduction

A lot of effort has been made in recent times to examine the optical properties of dielectric photonic
crystals. The idea for these crystals arose several years ago, when they were discussed as materials to
control radiative properties [1] or to localize light [2]. Especially the proposal to use photonic crystal
structures for novel applications brought about fascinating concepts [3]. The idea behind these crystals is a
perfect periodic variation of the dielectric constant, where the periodicity is on the order of the wavelength
of light [4]. Such an arrangement can cause Bragg scattering of electromagnetic waves, resulting in stop
bands in their electromagnetic transmission characteristics.

One problem arises when working with photonic crystals. Theory and device concepts always deal
with perfect periodic structures, where the different dielectrica are arranged on perfect lattices. However,
such crystals are artificially fabricated materials. Especially when working in the visible spectral range,
the fabrication requirements often reach the limits of the utilized lithographic methods. Consequently,
real photonic crystals can show strong deviations from the perfect structure [5]. Of course, such disorder
directly influences the optical properties of real crystals [6]. Not only possible applications require a
detailed knowledge about the influence of disorder in these artificial structures. From a fundamental point
of view, the already interesting optical properties of photonic crystals show further interesting effects in
the presence of disorder. Typical examples are disorder-induced modifications of photon states and of the
transmission [2, 7, 8, 9].

The concept ofmetallicphotonic crystals has gained a lot of interest recently [10]. In metal-based struc-
tures, one of the dielectric constituents is replaced by a metal. One possibility to fabricate such structures
is the periodic arrangement of metallic nanostructures on top of a dielectric waveguide slab [11]. This
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2 D. Nau et al.: Polariton bandstructure of disordered metallic photonic crystal slabs

Fig. 1 (a): Metallic photonic crystal slab consisting of a gold grating on top of a dielectric waveguide layer.E
indicates the direction of the electrical field polarization,ϕ denotes the angle of light incidence. (b) and (c): Scheme
of uncorrelated and correlated disorder, respectively. Dotted lines indicate the center positions of the perfect grating
with periodd0.

metallic photonic crystal slab (MPCS) belongs to the class of crystals that provide simultaneously pho-
tonic and electronic resonances in the same spectral range. A strong coupling between the resonances due
to the formation of a polariton-type quasiparticle comes along with a pronounced polaritonic bandstructure
[12, 13].

It is the aim of this paper to enlighten the influence of disorder on the polaritonic bandstructure of
MPCS. Therefore, a novel concept to study this relation in a quantitative way is utilized by artificially
introducing disorder in a controlled manner into the structures. Measuring their optical properties allows
to directly relate transmission spectra to disorder type and amount [14].

2 Sample description

Our samples consisted of one-dimensional gold gratings on top of a 140 nm thick dielectric waveguide
layer (indium tin oxide, ITO), that was deposited on a glass substrate [Fig. 1(a)]. The width of the wires
was 100 nm and their height 20 nm. By using electron-beam lithography to fabricate the samples, the
positions and the shapes of the nanostructures can be controlled with very high accuracy when restricting
to areas of less than 100 x 100µm2. Hence, we are able to introduce artificial disorder with a well defined
type and strength into the crystal [14, 15]. The optical properties of the MPCS were measured with a
white-light transmission setup with an aperture angle of about0.2◦ [12]. The setup allowed for performing
angle-resolved measurements by varying the polar angle of light incidenceϕ, see Fig. 1. When measuring
the extinction [− ln(T ), T : transmission] of these structures, the influence of disorder type and amount on
the polariton bandstucture of MPCS can be obtained.

It was found that the optical properties of such MPCS are determined by both the nanowires and the
waveguide layer. An incident light field excites an electronic resonance in the metallic nanostructures
(particle plasmon) [16]. Additionally, optical resonances in the waveguide layer are excited (see [13] and
references therein). For symmetry reasons, only the symmetric quasiguided mode is excited at normal light
incidence (ϕ = 0). The additional excitation of the antisymmetric quasiguided mode requires an oblique
angle (ϕ 6= 0). Strong coupling effects of plasmon and quasiguided modes and the formation of a polariton-
type quasiparticle were reported [12, 13]. For nanowires, the plasmon and hence the polariton can only be
excited for light polarization perpendicular to the wires (TM polarization). In the extinction, the polariton is
characterized at normal light incidence by two pronounced maxima that are separated by a spectral region
with high transmission [11, 12]. These maxima are caused by the interaction of plasmon and symmetric
quasiguided mode and they correspond to upper and lower polariton branch. For a polarization along the
wires (TE polarization), only the highly asymmetric Fano-lineshape of the quasiguided mode is observable
in the extinction [13]. The optical properties are strongly modified both in TE and TM polarization for
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an oblique angle of incidence. The extinction shows an additional maxima which can be attributed to the
excitation of the antisymmetric quasiguided mode [13].

3 Disorder Models

In this work, disorder means a variation of the positions of the nanowires (positional disorder). The width
and the height of the nanowires are kept fixed. We consider two models with different next-neighbor
correlations [14]. In the uncorrelated disorder model, the nanowires’ positions are varied with respect to
their positions in the perfect grid [Fig. 1(b)]. Starting at positionx0, the position of nanowirei is given by

xi = x0 + i · d0 + ∆xi, (1)

whered0 is the period of the perfect grating and∆xi is the variation of thei-th position. This model is
related to phonons in a solid, where atoms and ions perform movements around their equilibrium positions
due to thermal fluctuations [17]. In the correlated disorder model, the positionsxi and xi−1 of next-
neighbors are correlated [Fig. 1(c)]. Therefore,xi includes all variations of the preceding nanowires,

xi = xi−1 + d0 + ∆xi = x0 + i · d0 +
i∑

j=1

∆xj . (2)

Similar methods are used to model amorphous materials [18]. A detailed discussion and characteriza-
tion of the disorder models is reported in [14]. For normal light incidence, uncorrelated disorder reduces
the excitation efficiency of the quasiguided mode which causes a reduced amplitude of the corresponding
polariton branch [19]. Correlated disorder additionally excites several quasiguided modes at slightly dif-
ferent energies resulting in an inhomogeneous broadening of the extinction resonances. Furthermore, the
coupling strength of the polariton was found to be disorder-dependent.

The variations∆xi follow a uniform (rect) or a normal (Gaussian) distributionD(∆x) with a full-width
at half-maximumw. Giving w as a fraction ofd0 quantifies the disorder amount asa[%] = w/d0 · 100
in the samples. In this work, we will determine the polaritonic bandstructures of samples with uniformly
distributed uncorrelated disorder and with Gaussian distributed correlated disorder. It should be empha-
sized that the distributionD(∆x) (uniform or normal) does not affect the qualitative effects at normal light
incidence [14]; they are rather determined by the disorder type (correlated or uncorrelated). We therefore
conclude that the qualitative effects that are presented in the following are also caused by the disorder type
and not byD(∆x).

4 Bandstructure

Figure 2 shows exemplary such angle-resolved extinction spectra in TE and TM polarization for the two
different disorder types at 30% disorder amount. The polariton bandstructure can be deduced from the
peaks of such measurements [12]. Therefore, the energies of the polariton resonances are plotted as a
function of ϕ or of the momentumkx with kx = k0 sinϕ [see Fig. 1(a)]. The results for the sample
with uniform uncorrelated disorder are shown in Fig. 3 (left panel) for increasing disorder. Clearly, the
bandstructure of the polariton can be observed in the case of no disorder. It consists of pronounced bands
that are separated by stop gaps. The bands correspond to lower, middle, and upper polariton branch, and
the stop gaps are caused by the strong coupling in the MPCS. This bandstructure visualizes the interplay
of particle plasmon, symmetric quasiguided mode, and antisymmetric quasiguided mode. Note, that the
middle polariton branch (which corresponds to the antisymmetric quasiguided mode) does not appear atkx

= 0 for symmetry reasons. Increasing uniform uncorrelated disorder reduces the gaps between the bands.
The splitting between the middle and upper polariton branches vanishes for a disorder amount of about
60%, and the splitting between upper and lower branch reduces continuously. The bandstructure itself is
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Fig. 2 Measured extinction spectra of samples with uniform uncorrelated disorder (upper panels) and Gaussian cor-
related disorder (lower panels), both for a disorder amount of 30%. The left (right) plots show spectra for TE (TM)
polarization with increasing angle of light incidenceϕ.

retained and not destroyed by this type of disorder. Even for large disorder amounts of up to 70% the
bands of the different polariton branches are distinguishable. For still larger amounts (80% and more) the
quasiguided modes are not excited any more [14]. Thus, only the plasmonic polariton branch appears (not
shown here).

The dispersion of the sample with Gaussian correlated disorder is plotted in the right panel of Fig. 3.
For no disorder, again the polariton dispersion can be observed. Due to different detunings of plasmon
and quasiguided mode in the samples, the bands appear at slightly different energies when compared to the
sample with uniform uncorrelated disorder. Increasing disorder starts to wash out the bandstructure, and
an amount of 30% and higher completely destroys the polariton branches. No bandstructure is retained,
and further structures appear, causing the original polariton branches to be inhomogeneously broadened.

These results can be understood immediately when taking into account the results for disordered MPCS
at normal light incidence [19]. Uncorrelated disorder reduces the amplitude of the polariton branch that
corresponds to the quasiguided mode. Correlated disorder, however, additionally excites multiple quasigu-
ided modes at different energies. We can attribute these modes to be responsible for the smearing of the
bands for correlated disorder. Each mode couples to the plasmon and hence forms a polariton with slightly
different energy and slightly shifted dispersion. The resulting dispersion of the sample leads to the com-
plete vanishing of pronounced polariton branches. This is not the case for uncorrelated disorder with no
additional quasiguided modes. It was also reported in [19] that disorder reduces the polariton splitting
due to a modified coupling strength of the polariton. As the polariton splitting gives the energy separation
of upper and lower branch in the bandstructure, this fact allows to analyze the decreasing stopbands for
uncorrelated disorder. This effect also appears for correlated disorder, however, it is not visible there due
to the smearing of the bands.
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Fig. 3 Polaritonic bandstructure of a sample with increasing uniform uncorrelated disorder (left panel) and with
increasing normal correlated disorder (right panel) in TM polarization. The dots denote peaks in the extinction spectra.

5 Simulation

The polariton dispersion of theorderedMPCS can be tailored by determining the eigenvalues of an effec-
tive HamiltonianHeff (see [12] for details). It includes the energyE0 of theTM0 quasiguided modes at
kx = 0, the energyEPl of the individual wire plasmons, the stop-band half-widthV1 in the 1-dim photonic
crystal slab, and the coupling energyV2 of quasiguided mode and wire plasmon. Absorption and losses are
taken into account by introducing finite half-widths to the resonances of plasmon and quasiguided mode.
With Γ as half-width of the plasmon, its energyEPl is replaced byEPl − iΓ. The same holds for the
quasiguided modes, whose half-widthγ modifies their energies toE0 ± c̃kx − iγ. The radiative losses
of the quasiguided modes are modelled with a complex photonic band gap. Withγ1 being the radiative
damping,V1 is replaced byV1 − iγ1. We obtain the following matrix to calculateHeff [12]

 E0 + V1 − i(γ + γ1) c̃kx

√
2V2

c̃kx E0 − V1 − i(γ − γ1) 0√
2V2 0 EPl − iΓ

 . (3)

It was found that the coupling strength of plasmon and quasiguided mode is modified by disorder and
defects [15, 20]. This can be understood intuitively asV2 can be determined from the spatial overlap of the
electrical fields of plasmonEPl(r) and quasiguided modeEWG(r). In a system with positional disorder,
this overlap can be drastically reduced. To quantitatively determine the decrease ofV2, we calculateV2 in
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a simple model. Here, the modified coupling strength obeys

V dis
2 =

1
V2

∫ ∞

−∞
EWG ·EPl dr. (4)

We normalize it to the coupling strengthV2 of the ordered MPCS. The modification ofV2 is then taken
into account by replacingV2 in Eq. (3) byV mod

2 = V2 · V dis
2 . The electrical field of the plasmonEPl

is mainly localized at the positions of the nanowires. Introducing disorder varies these positions. Hence,
the coupling of plasmon and quasiguided mode is reduced in disordered systems due to a changing spatial
overlap and a therefore modifiedV2 [see Fig. 4(a)]. ApproximatingEWG by a cosine-type oscillation with
periodd0

EWG(x, ϕ) = cos
(
(2πx− ϕ)/d0

)
, (5)

and assumingEPl to be a non-zero constant inside the nanowires and vanishing outside

EPl(x) =
{

1 : x ∈ nanowire
0 : x 6∈ nanowire

, (6)

we estimate the change ofV2 by using the spatial arrangement of the nanowires. The results are shown
in Fig. 4(b).V2 decreases with increasing disorder, however, the models differ in the dependence ofV2 on
the degree of disorder. DecreasingV2 reduces the coupling of plasmon and quasiguided mode, causing a
reduction of the polariton splitting in the dispersion.

With this Hamiltonian we are able to simulate the polariton dispersion of a MPCS with uncorrelated
disorder. All parameters in Eq. (3) are adapted to yield the correct results for no disorder (see also the
parameters in [12]). For larger disorder amount, onlyV mod

2 was changed according to Eq. (4). It should
be noted that also the stop-band half-widthV1 of the 1-dim photonic crystal slab is influenced by disorder
(see Section 6). However, we neglect this effect here.

The polariton bandstructure of a sample with uncorrelated disorder agrees well in experiment and sim-
ulation, as can be seen in Fig. 4(c). Increasing uncorrelated disorder retains the dispersion branches of
the polariton, and the splittings between the bands are reproduced nicely by the simulations. Deviations
in the simulated results from the measurements are presumably caused by not considering the influence of
disorder onV1.

6 TE Polarization

We also determined the bandstructure in TE polarization, where only symmetric and antisymmetric quasigu-
ided mode are excited at an oblique angle of incidence. Hence, the bandstructure reveals the dispersion of
the quasiguided slab modes with two bands and not the one of the polariton. The results for the samples
with uniform uncorrelated and with Gaussian correlated disorder are plotted in Figs. 5. Both bandstruc-
tures figure out nicely the observations from TM polarization. While uncorrelated disorder only reduces
the splitting between both bands, additional modes occur for correlated disorder and broaden the band-
structure: No bandstructure is obtained for a disorder amount of about more than 20%. As pointed out in
Section 4, the reduction of the bandsplitting due to uncorrelated disorder (see Fig. 5) indicates a modified
V1 in Eq. (3). Again, this can be understood intuitively as in such MPCS symmetric and antisymmetric
quasiguided modes have their nodes and antinodes under the nanowires, respectively [13]. Hence, both
modes experience a different effective dielectric environment, which leads to different energies according
to their dispersion [21]. Introducing positional disorder modifies the positions of the nanowires with re-
spect to both modes. As a result, the difference in the effective dielectric environment of symmetric and
antisymmetric mode decreases, which leads to a reduced energy difference and hence a reduced splitting
in the bandstructure.
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Fig. 4 (a) Spatial overlap of the electrical fields of plasmon and quasiguided mode in ordered and disordered MPCS.
(b) Normalized modified coupling strengthV mod

2 as a function of disorder and for different disorder types. (c) Disper-
sion of the sample with uniform uncorrelated disorder: experiment and simulation in TM polarization. The bandstruc-
ture is plotted for increasing amounts of disorder.

7 Conclusion

To conclude, we have studied the influence of disorder on the polariton bandstructure of metallic photonic
crystal slabs. We found that uncorrelated disorder retains the bandstructure and only reduces the splitting
between the bands. The latter can be explained by a reduced spatial overlap of the electrical fields of
particle plasmon and quasiguided modes. Correlated disorder, however, leads to the excitation of several
modes at slightly different energies. They cause a smearing of the bands and a total destruction of the
bandstructure at moderate amount of disorder. Our results are interesting for improving possible future
applications of MPCS on the one hand hand (see e.g. [22]), on the other hand they could give first hints
to localization in our structures [2]. The limitations of this method are obvious for correlated long-range
disorder: Due to the breakdown of the bandstructure, it is no longer possible to describe the system with a
simple photonic band structure. Solid state physics describes a possible route to follow with its successful
description of amorphous semiconductors. More elaborate concepts, such as mobility gaps, Urbach tails,
and localized states within the gap shall be used.
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Fig. 5 Polariton bandstructure of a sample with increasing uniform uncorrelated disorder (left panel) and with in-
creasing normal correlated disorder (right panel) in TE polarization.
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