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Renormalization group theory for Kondo breakdown

in Kondo lattice systems

K Ballmann, A Nejati and J Kroha

Physikalisches Institut and Bethe Center for Theoretical Physics, Universität Bonn, Nussallee,
12, 53115 Bonn, Germany

E-mail: kroha@physik.uni-bonn.de

Abstract. We present a renormalization group (RG) theory for the breakdown of Kondo
screening in the Kondo lattice model (KLM) without pre-assumptions about the competition
between Kondo effect and magnetic ordering or Fermi surface criticality. We show that the
vertex between a single, local Kondo spin and the extended conduction electrons obtains RKKY-
induced, non-local contributions in the in-and out-going coordinates of scattering electrons due
to scattering at surrounding Kondo sites, but it remains local in the Kondo spin position. This
enables the existence of a local Kondo screening scale TK(y) in the KLM, controlled by the
effective RKKY coupling parameter y. TK(y) is determined by the RG flow of the local spin
exchange coupling in the presence of the self-consistent spin response on surrounding Kondo
sites. We show that TK(y) exhibits universal behavior and is suppressed by the antiferromagnetic
RKKY coupling. Beyond a maximal RKKY parameter value ymax Kondo screening ceases to
exist even without magnetic ordering. The theory opens up the possibility of describing quantum
critical scenarios involving spin wave instabilities or local Kondo breakdown on the same footing.

1. Introduction

One of the intriguing problems of magnetic quantum phase transitions (QPT) in heayy-fermion
systems [1] are the conditions for the breakdown of Kondo screening and the destruction of
the heavy fermionic quasiparticles. The breakdown mechanisms invoked by different theoretical
approaches include critical fluctuations of the local magnetization (local quantum criticality)
[2, 3] as well as large Fermi surface fluctuations associated self-consistently with the Fermi volume
collapse near the Kondo breakdown [4]. Most recently, Wölfle and co-workers have put forward
a scenario of critical quasiparticles, characterized by a diverging effective mass and a slow, non-
Fermi liquid powerlaw divergence of the relaxation rate [5, 6]. This scenario of a critical Fermi
liquid, based on a self-consistently determinded, singular quasiparticle interaction, is intriguing
in its generality, similar in spirit to the Landau Fermi liquid theory, but it does not address
which microscopic effect might cause the criticality of quasiparticles. A consistent, microscopic
understanding of Kondo breakdown has not been reached. Even without critical fluctuations
the local spin-screening scale TK in Kondo lattice systems is poorly understood.

We have developed a renormalization group theory for local spin screening in dense Kondo
systems with RKKY-induced coupling to the surrounding Kondo ions, but in the absence of
critical fluctuations. Such a scenario can be realized for temperatures well above the magnetic
ordering and above the lattice coherence temperature [7], in two-impurity [8] or in magnetically
frustrated lattice systems. We calculate the β-function for the magnetic coupling J between a
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Figure 1. f−spin–conduction electron vertex Γ̂, in-
cluding all non-local, RKKY-induced contributions
to leading order in the spin exchange coupling J0.
Grey bubbles represent the full, f−spin susceptibil-
ity at sites j. Solid lines depict conduction electrons,
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Figure 2. 1-loop diagrams for
the perturbative RG. The grey
rectangles represent the vertex Γ̂ of
Fig. 1.

localized spin and conduction electrons in 1-loop order, taking into account systematically that
in a multi-impurity system the conduction electron – impurity spin vertex has a contribution
from the RKKY coupling [9–11] to the surrounding Kondo spins. Since this contribution involves
the local dynamical susceptibility on neighbouring Kondo sites, which is inversely proportional
[12] to the Kondo spin-screening energy TK on the neighboring sites, it leads to a self-consistent
suppression of TK . We find that this renormalization of the Kondo scale with respect to the
bare Kondo temperature without RKKY coupling, TK(y)/TK(0), is a universal function of the
dimensionless RKKY coupling parameter y. Remarkably, complete Kondo screening terminates
at a maximal RKKY coupling ymax, which depends on TK(0) only. The results are quantitatively
consistent with experimental results for tunable two-impurity Kondo systems [8]. This theory
reveals that Kondo breakdown may occur even without quantum critical fluctuations. Therefore,
it sets the stage for considering Kondo lattice systems with an additional magnetic ordering
instability by including critical ordering fluctuations of the incompletely screened magnetic
moments in the calculation of the conduction electron-local spin vertex.

The paper is organized as follows. In Section 2 we define the Kondo lattice model and calculate
the conduction electron – impurity spin scattering vertex, including systematically the RKKY
contributions in leading order of the RKKY coupling y. The one-loop renormalization group
equation for this vertex is derived in Section 3, and the universal solutions for the Kondo scale
TK(y)/TK(0) and the threshold RKKY coupling for Kondo breakdown, ymax are presented. We
conclude in Section 4 with a discussion of our findings and the implications for future research
on quantum criticality in heavy-fermion systems.

2. Kondo lattice model and conduction electron-local spin vertex

The Kondo lattice model (KLM) of localized spins S(xi) on the lattice positions xi, exchange-
coupled to a sea of conduction electrons with dispersion εk, is defined as,

H =
∑

k,σ

εk c†
kσckσ + J0

∑

i

S(xi) · s(xi) J0 > 0 (1)

where s(xi) = c†iσσσσ′ciσ′ and S(xi) = 1/2 f †
iτσττ ′ciτ ′ are the spin operators of conduction

electrons and of the local spins at site i, respectively. ciσ, c†iσ′ denote the local conduction

electron operators, fiσ, f
†
iσ′ the fermionic operators of the pseudofermion representation of the
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local spins with the operator constraint Q̂ =
∑

σ f
†
iσfiσ′ = 1. σ is the vector of Pauli matrices,

and the sum convention of summing over repeatedly appearing spin indices is adopted. In
heavy-fermion systems, the local spins are typically realized by electrons in atomic 4f -orbitals
and will therefore be termed f−spins. As is well known, through the antiferromagnetic exchange
coupling J0 > 0 this model encompasses both, the formation of local singlets of f−spins and
conduction spins via the Kondo effect as well as long-range magnetic ordering. The latter is
induced by the RKKY interaction which is mediated in O(J2

0 ) by the conduction electron density
correlations.

As discussed in the introduction, we here investigate the conditions for the Kondo effect,
i.e., complete spin screening of a local f−spin, to be realized in the Kondo lattice model. In
particular, we calculate the temperature scale below which the Kondo singlet is formed. In
the language of the perturbative renormalization group (RG) this is the question under which

conditions the full spin-scattering vertex Γ̂fc between conduction electrons and an f−spin at
an arbitrarily chosen, but fixed site i diverges during the RG flow. Even though the bare
spin coupling of the KLM is local, the full vertex Γ̂fc acquires non-local contributions, since
conduction electrons can scatter from surrounding f−spins at sites j 6= i and the flip of an f−spin
on site j is transfered to the f−spin on site i via the RKKY correlations. The corresponding
diagrams are shown, to leading (linear) order in the RKKY coupling, in Fig. 1. The first diagram
on the right-hand side of Fig. 1 is the bare vertex of the KLM, the second one represents the

direct, non-local spin-exchange term, γ
(d)
RKKY , and the third one its exchange diagram, γ

(x)
RKKY .

In this way, the full vertex can be written as,

Γ̂fc(xi,xj , iΩ) =
[

Jδij + γ
(d)
RKKY (rji, iΩ) + γ

(x)
RKKY (rji, iΩ)

]

S(xi) · s(xj) , (2)

with rji = xj−xi the distance vector between the sites i and j and Ω the energy transfered in the
scattering process. The solid lines running between the sites i and j depict the RKKY mediated
correlations, described by the conduction electron density correlation function χc(rji, iΩ) (bubble

of solid lines) in γ
(d)
RKKY . In addition, the coupling of the scattering electrons is proportional to

the exact, dynamical f−spin susceptibility χf (iΩ) on the surrounding sites j 6= i, as also seen

in Fig. 1. A detailed calculation shows [13] that the RG flow of Γ̂fc is dominated by γ
(d)
RKKY and

the exchange part γ
(x)
RKKY gives only a subleading, logarithmic contribution which, in particular,

does not influence the universal behavior derived in Section 4. Hence, the f − c vertex reads, to
linear order in the RKKY coupling,

Γ̂fc(rji, iΩ) = J
[

δi,j + J2
0 (1− δij) χc(rji, iΩ) χ̃f (iΩ)

]

S(xi) · s(xj) (3)

Note that higher order terms, as for instance generated by the RG (see Fig. 2), lead to non-
locality of the in-coming and out-going coordinates of the scattering electrons, xj , xj′ , but the
f−spin coordinate xi remains local, because the f−spin propagator is strictly local. Therefore,
the formation of a lattice-coherent, heavy f−band is not relevant for the f-c vertex. The
calculation of the dynamical f−spin susceptibility for the KLM is, in general, difficult. It are
the correlations between spin fluctuations on different lattice sites that have hampered previous
treatments of the Kondo lattice problem. However, Γ̂fc involves the local f−spin susceptibility
only, whose exact dependence on temperature T is known from the Bethe ansatz solution [12].
It is parameterized by a single energy scale, the single-impurity Kondo temperature TK and
characterized by a T = 0 value χf (0) ∝ 1/TK and a crossover to a 1/T decay for T > TK . For
our analytic treatment, the retarded/advanced dynamical f−spin susceptibility can, therefore,
be written as,

χf (Ω± i0) =
(gLµB)

2W

πTK

1
√

1 + (Ω/TK)2

(

1± 2i

π
arsinh

Ω

TK

)

=: (gLµB)
2 χ̃f (Ω± i0) (4)
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where the real part incorporates the exact Bethe ansatz features described above and the
imaginary part is implied by the Kramers-Kroenig relation. gL, µB, W are the Landé factor,
the Bohr magneton and the Wilson ratio, respectively. The Kondo scale TK is to be determined
self-consistently from the RG solution below.

3. Renormalization group theory for the full f − c vertex

We now construct the one-loop RG equation for the f − c vertex Γ̂fc, including RKKY-induced
non-local contributions to linear order in χc. That is, we derive the β−function for the effective
coupling constant J of an f−spin at site i to conduction electrons scattering at the Fermi surface,
k = kF , ω = 0. Note that the renormalization of the spin exchange coupling at surrounding
sites j 6= i is already incorporated exactly in the full local susceptibility χf (Ω ± i0), Eq. (4).
Therefore, the bare coupling constant J0 appears on these sites, as already shown in Eq. (3). The

one-loop diagrams are shown in Fig. 2. Note that the dynamical vertex Γ̂fc is in general complex
(c.f. Eqs. (3), (4)), corresponding to an energy dependent scattering phase. However, for each

term of Γ̂fc there is its hermitian conjugate term which makes the total scattering vertex in
the renormalized Hamiltonian hermitean. Therefore, in leading order of the conduction electron
density correlator χc, the position dependent part of the one-loop diagrams reads,

Y (rji, rj′i, iω, iΩ) = 2Re
[

J2J2
0 δij′ (1− δij)Gc(rjj′ , iω + iΩ)χc(rji, iΩ) χ̃f (iΩ)

]

, (5)

where ω is the energy of in-coming conduction electrons, and Gc(rjj′ , iω + iΩ) is the single-
particle conduction electron propagator from the in-coming to the out-going sites j and j′,

Gc(r, ω ± i0) = −πN(ω)
e±ik(εF+ω)r

k(εF + ω)r
, (6)

where r = |rjj′ |, the bare density of states N(ω), and k(εF + ω) is the modulus of the
momentum corresponing to the energy ω. Choosing the f−spin site arbitrarily as xi = 0, Fourier
transforming the expression Eq. (5) to momentum space and introducing the dimensionless
couplings g = N(0)J , g0 = N(0)J0, one obtains for in-coming electrons at the Fermi surface,

Y (kF , ω = 0, iΩ) = 2Re



g2g20
∑

j 6=0

e−ikF rji
1

N(0)4
Gc(rji, iΩ)χc(rji,Ω = 0) χ̃f (iΩ)



 . (7)

Since χc is weakly frequency-dependent on the scale of TK , it has been replaced by its static,
i.e., real part (Ω = 0). Integrating in the diagrams of Fig. 2 over the intermediate conduction
electron energy and differentiating w.r.t. the running band cutoff D, the RG equation for the
local spin-exchange coupling g is obtained in the usual way. Note that the band cutoff appears
in both, the intermediate electron propagator Gc and in χc. However, differentiation of the
latter does not contribute to the logarithmic RG flow, since the RKKY coupling is marginally
irrelevant in the RG sense. Nevertheless, χc appears as a factor in the RKKY-corrected, local
coupling. The 1-loop RG equation ultimately reads,

dg

d lnD
= −2g2

(

1− y g20
D0

TK

1
√

1 + (D/TK)2

)

, (8)

where D0 is the bare band cutoff and the dimensionless coefficient y is defined via Eq. (7) as

y = −4W

π2

∑

j 6=0

e−ikF rji
1

N(0)2
ImGA

c (rji,Ω = 0)χc(rji,Ω = 0) (9)
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y parameterizes the RKKY coupling strength. It can be antiferromagnetic (y > 0) or
ferromagnetic (y < 0) due to the spatially oscillating behavior of χc. For an isotropic and
dense system, kFa ≪ 1, the summation in Eq. (9) can be approximated by an integral, and with
the substitution x = 2kF r, r = |rji|, y can be expressed as

y ≈ − W

(kFa)3

∫ ∞

kF a

dx (1− cos x)
x cos x− sinx

x4
> 0 , (10)

showing generically antiferromagnetic behavior, i.e. a reduction of the effective f − c coupling
by the RKKY contributions.

It is seen that the dynamic f−spin response χf introduces a soft cutoff on the scale of TK to
the RG flow of the RKKY contribution in Eq. (8). More importantly, however, at low energies
it is inversely proportional to the local Kondo screening scale TK . This leads to a negative
feedback in the RG flow, which determines the TK in a selfconsistent way.

4. Universal suppression of the local Kondo scale

The RG Eq. (8) can be integrated analytically. In the perturbative RG framework, TK is defined
as the value of the running cutoff D, where the coupling g diverges. It is then obvious that for
the KLM the local Kondo scale depends on the RKKY-mediated coupling y: TK = TK(y). The
solution of the RG Eq. (8) implies that TK(y) is self-consistently determined by the equation,

TK(y)

TK(0)
= exp

(

−y α g20
D0

TK(y)

)

, (11)

where TK(0) = D0 exp(−1/2g0) is the bare Kondo scale without RKKy coupling, and α =
2 ln(1 +

√
2). It is readily shown that for sufficiently small y this equation has two solutions,

where the larger one (first divergence of g during the RG flow) corresponds to the physical
TK(y). Beyond a maximal antiferromagnetic RKKY strength, y > ymax, however, Eq. (11) has
no solution, i.e. the divergence of the RG and, hence, complete spin screening at the lowest
energies ceases to exist. This marks the breakdown of the heavy Kondo quasiparticles. The
solutions of Eq. (11) are shown in the inset of Fig. 3 for several bare Kondo temperatures TK(0).
The maximal, RKKY-induced TK(y) suppression as well as the value of the maximal coupling
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parameter ymax at the Kondo breakdown point can be shown analytically from Eq. (11) to have
the universal values [13],

TKmin

TK(0)
=

TK(ymax)

TK(0)
=

1

e
, ymax =

4

α e
τK (lnτK)2 , (12)

where we have defined τK = TK(0)/D0. Using the definition of TK(0) above and inserting
Eq. (12) into Eq. (11) proves that TK(y) is suppressed in a universal way, i.e., Eq. (11) is a
parameter-free equation for TK(y)/TK(0) in terms of y/ymax only. Fig. 3 shows the scaling
collapse of all TK(y) curves in terms of the rescaled variables TK(y)/TK(0) and y/ymax.

5. Conclusion

To conclude, we have shown that in multiple-impurity or Kondo lattice systems the conduction
electron-local f−spin vertex Γfc acquires non-local, RKKY-induced contributions from electron
spin scattering at surrounding spin sites, but remains local in the f−spin coordinate. The
perturbative RG treatment of this vertex, including the self-consistently determined response of
the surrounding Kondo spins, predicts a universal suppression of the local Kondo screening scale
TK(y) and a breakdown of complete Kondo screening at a finite, maximum RKKY coupling
parameter ymax. We emphasize that subleading contributions to Γfc, may modify the form
of the cutoff function in the RG Eq. (8) and, therefore, the non-universal parameter α, but
they do not change the generic, inverse dependence of the RKKY-induced contributions on
the self-consistently determined screening scale. Therefore, subleading contributions do not
affect the universal TK(y) behavior. The universal maximum TK suppression at the breakdown
point, TK(ymax)/TK(0), is in quantitative agreement with the minimal resonance width found
in STM spectroscopy on a tunable two-impurity Kondo system [8]. Since the present theory
predicts Kondo breakdown without invoking magnetic ordering, it sets the stage for a microscopic
description of different quantum critical scenarios on the same footing, driven either by a spin-
wave instability of the heavy Fermi liquid when y < ymax (Hertz-Millis scenario [14, 15]), or
by magnetic ordering of the residual local moments with heavy quasiparticle breakdown when
y = ymax.
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[6] Abrahams E, Wölfle P and Schmalian J 2014 Phys. Rev. B 90, 045105
[7] Klein M, Nuber A, Reinert F, Kroha J, Stockert O and von Löhneysen H 2008 Phys. Rev. Lett. 101, 266404
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