2025
- Measurement-induced dynamical quantum thermalization37
Marvin Lenk, Sayak Biswas, Anna Posazhennikova, Johann Kroha
- Stabilizing open photon condensates by ghost-attractor dynamics38
Aya Abouelela, Michael Turaev, Roman Kramer, Moritz Janning, Michael Kajan, Sayak Ray, Johann Kroha
- Discovery of a non-Hermitian phase transition in a bulk condensed-matter system39
Jingwen Li, Michael Turaev, Masakazu Matsubara, Kristin Kliemt, Cornelius Krellner, Shovon Pal, Manfred Fiebig, Johann Kroha
- Missing spectral weight in a paramagnetic heavy-fermion system40
Jingwen Li, Debankit Priyadarshi, Chia-Jung Yang, Ulli Pohl, Oliver Stockert, Hilbert von Loehneysen, Shovon Pal, Manfred Fiebig, Johann Kroha
Phys. Rev. B 111, 035117 (2025)
DOI: https://doi.org/10.1103/PhysRevB.111.03511741
- Kondo coherence versus superradiance in terahertz radiation-driven heavy-fermion systems43
Chia-Jung Yang, Michael Woerner, Oliver Stockert, Hilbert v. Löhneysen, Johann Kroha, Manfred Fiebig, and Shovon Pal
Phys. Rev. B 109, 235103 (2024)
DOI: https://doi.org/10.1103/PhysRevB.109.23510344
- Non-Markovian dynamics of open quantum systems via auxiliary particles with exact operator constraint45
Tim Bode, Michael Kajan, Francisco Meirinhos, Johann Kroha
Phys. Rev. Research 6, 013220 (2024)
DOI: https://doi.org/10.1103/PhysRevResearch.6.01322046. - Temporal Bistability in the Dissipative Dicke-Bose-Hubbard System47
Tianyi Wu, Sayak Ray, Johann Kroha
Annalen der Physik, 2300505 (2024)
DOI: https://doi.org/10.1002/andp.202300505.48
- Strange-metal behavior without fine-tuning in PrV2Al2049
Marvin Lenk, Fei Gao, Johann Kroha, Andriy H. Nevidomskyy,
Phys. Rev. Res. 6, L042008 (2024)
DOI: https://doi.org/10.1103/PhysRevResearch.6.L04200850
- Kritische Verlangsamung und Vernichtung von Fermionen51
Chia-Jung Yang, Manfred Fiebig, Shovon Pal, Johann Kroha,
Physik in unserer Zeit 54 (6), 269-270 (2023).
DOI: https://doi.org/10.1002/piuz.20237060651 - Critical slowing down near a magnetic quantum phase transition with fermionic breakdown52
Chia-Jung Yang, Kristin Kliemt, Cornelius Krellner, Johann Kroha, Manfred Fiebig, Shovon Pal,
Nature Physics 19, 1605-1610 (2023).
DOI: https://doi.org/10.1038/s41567-023-02156-753 - Photoemission signature of the competition between magnetic order and Kondo effect in CeCoGe354
Peng Li, Huiqing Ye, Yong Hu, Yuan Fang, Zhiguang Xiao, Zhongzheng Wu, Zhaoyang Shan, Ravi P. Singh, Geetha Balakrishnan, Dawei Shen, Yi-feng Yang, Chao Cao, Nicolas C. Plumb, Michael Smidman, Ming Shi, Johann Kroha, Huiqiu Yuan, Frank Steglich and Yang Liu,
Phys. Rev. B 107, L201104 (2023), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevB.107.L20110455 - Quantum spin liquid in an RKKY-coupled two-impurity Kondo system56
Krzysztof P. Wójcik and Johann Kroha,
Phys. Rev. B 107, L121111 (2023).
DOI: https://doi.org/10.1103/PhysRevB.107.L12111157 - Asymmetry effects on the phases of RKKY-coupled two-impurity Kondo systems58
Krzysztof P. Wójcik and Johann Kroha,
Phys. Rev. B 107, 125146 (2023).
DOI: https://doi.org/10.1103/PhysRevB.107.12514659
- Classical route to ergodicity and scarring phenomena in two component Bose-Josephson junction60
Debabrata Mondal, Sudip Sinha, Sayak Ray, Johann Kroha, and Subhasis Sinha,
Phys. Rev. A 106, 043321 (2022).
DOI: https://doi.org/10.1103/PhysRevA.106.04332161
- Real- and Fourier space observation of the anomalous pi mode in Floquet engineered plasmonic waveguide arrays62
Anna Sidorenko, Zlata Fedorova (Cherpakova), Johann Kroha, Stefan Linden,
Phys. Rev. Research 4, 033184 (2022).
DOI: https://doi.org/10.1103/PhysRevResearch.4.03318463
- Chaos onset in large rings of Bose-Einstein condensates64
Damian Wozniak, Johann Kroha, Anna Posazhennikova,
Phys. Rev. A 106, 033316 (2022).
DOI: https://doi.org/10.1103/PhysRevA.106.03331665
- Adaptive Numerical Solution of Kadanoff-Baym Equations66
Francisco Meirinhos, Michael Pohl, Johann Kroha, Tim Bode,
SciPost Phys. Core 5, 030 (2022).
DOI: https://doi.org/10.21468/SciPostPhysCore.5.2.03067
- Non-local correlations and entanglement of ultracold bosons in the 2D Bose-Hubbard lattice at finite temperature68
Ulli Pohl, Sayak Ray, Johann Kroha,
Ann. Phys. (Berlin) 534, 2100581 (2022).
DOI: https://doi.org/10.1002/andp.20210058169 (open access)
- Phasen eines Bose-Einstein-Kondensats aus Licht70
Fahri Öztürk, Julian Schmitt, Johann Kroha, Martin Weitz,
Phys. Unserer Zeit 52 (4), 162 (2021).
DOI: https://doi.org/10.1002/piuz.20217040471
- Observation of a non-Hermitian phase transition in an optical quantum gas72
Fahri Emre Öztürk, Tim Lappe, Göran Hellmann, Julian Schmitt, Jan Klaers, Frank Vewinger, Johann Kroha, Martin Weitz,
Science 372 (6537), 88-91 (2021).
DOI: https://doi.org/10.1126/science.abe986973
- Dissipation engineered directional filter for quantum ratchets74
Zlata Fedorova, Christoph Dauer, Anna Sidorenko, Sebastian Eggert, Johann Kroha, Stefan Linden,
Phys. Rev. Research 3, 013260, (2021), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevResearch.3.01326075
- Expansion dynamics in two-dimensional Bose-Hubbard lattices: BEC and thermal cloud76
Mauricio Trujillo-Martinez, Anna Posazhennikova, and Johann Kroha,
Phys. Rev. A 103, 033311(2021).
DOI: https://doi.org/10.1103/PhysRevA.103.03331177
- Oxygen vacancy-driven orbital multichannel Kondo effect in Dirac nodal-line metals IrO2 and RuO278
Sheng-Shiuan Yeh, Ta-Kang Su, An-Shao Lien, Farzaneh Zamani, Johann Kroha, Chao-Ching Liao, Stefan Kirchner, and Juhn-Jong Lin,
Nature Communications 11, 4749 (2020).
DOI: https://doi.org/10.1038/s41467-020-18407-779
- Teraherz Conductivity of Heavy-fermion Systems from Time-resolved Spectroscopy80
Chia-Jung Yang, Shovon Pal, Farzaneh Zamani, Kristin Kliemt, Cornelius Krellner, Oliver Stockert, Hilbert v. Löhneysen, Johann Kroha, and Manfred Fiebig,
Phys. Rev. Research 2, 033296 (2020).
DOI: https://doi.org/10.1103/PhysRevResearch.2.03329681
- Magnetic Kondo regimes in a frustrated half-filled trimer82
K. P. Wojcik, I. Weyman, J. Kroha,
Phys. Rev. B 102, 045144 (2020).
DOI: https://doi.org/10.1103/PhysRevB.102.04514483
- Observation of topological transport quantization by dissipation in fast Thouless pumps84
Z. Fedorova, H. Qiu, S. Linden, J. Kroha,
Nature Communications 11, 3758 (2020).
DOI: https://doi.org/10.1038/s41467-020-17510-z85
Nature SharedIt link: https://rdcu.be/b5RNz86
- Majorana-Kondo interplay in T-shaped double quantum dots87
I. Weyman, K. P. Wojcik, and P. Majek,
Phys. Rev. B 101, 235404 (2020).
DOI: https://doi.org/10.1103/PhysRevB.101.23540488
- Fluctuation dynamics of an open photon Bose-Einstein condensate89
F. E. Ozturk, T. Lappe, G. Hellmann, J. Schmitt, J. Klaers, F. Vewinger, J. Kroha, M. Weitz,
Phys. Rev. A 100, 043803 (2019), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevA.100.04380390
- Giant superconducting proximity effect on spintronic anisotropy91
Krzysztof P. Wojcik, Maciej Misiorny, Ireneusz Weymann,
Phys. Rev. B 100, 045401 (2019).
DOI: https://doi.org/10.1103/PhysRevB.100.04540192
- Fermi volume evolution and crystal-field excitations in heavy-fermion systems probed by time-domain terahertz spectroscopy93
Shovon Pal, Christoph Wetli, Farzaneh Zamani, Oliver Stockert, Hilbert von Löhneysen, Manfred Fiebig, and Johann Kroha,
Phys. Rev. Lett. 122, 096401 (2019).
DOI: https://doi.org/10.1103/PhysRevLett.122.09640194
- Fluctuation-damping of isolated, oscillating Bose-Einstein condensates95
Tim Lappe, Anna Posazhennikova, Johann Kroha,
Phys. Rev. A 98, 023626 (2018).
DOI: https://link.aps.org/doi/10.1103/PhysRevA.98.02362696
- Time-resolved collapse and revival of the Kondo state near a quantum phase transition97
97Christoph Wetli, S. Pal, Johann Kroha, Kristin Kliemt, Cornelius Krellner, Oliver Stockert, Hilbert von Löhneysen, Manfred Fiebig,
Nature Physics 14, 1103 (2018).
DOI: https://doi.org/10.1038/s41567-018-0228-398
Nature SharedIt link: https://rdcu.be/3KAs99
- Thermalization of isolated Bose-Einstein condensates by dynamical heat bath generation100
Anna Posazhennikova, Mauricio Trujillo-Martinez, Johann Kroha,
Ann. Phys. (Berlin) 530, 1700124 (2018). Journal link101
Feature article and featured in Advanced Science News102
- Interplay of Kondo effect and RKKY interaction103
Johann Kroha,
Lecture notes, Autumn school on Correlated Electrons, FZ Jülich, 25-29 Sept. 2017,
published in "The Physics of Correlated Insulators, Metals, and Superconductors",
E. Pavarini, E. Koch, R. Scalettar, and R. Martin (Eds.),
Series "Modeling and Simulation" Vol. 7, pp 12.1-12.27 (VerlagForschungszentrum Julich, 2017).
- Oscillation and suppression of Kondo temperature by RKKY coupling in two-site Kondo systems104
Ammar Nejati and Johann Kroha,
Proceedings of SCES 2016, Hangzhou, China; J. Phys.: Conf. Series 807, 082004 (2017).
- Kondo destruction in RKKY-coupled Kondo lattice and multi-impurity systems105
Ammar Nejati, Katinka Ballmann, and Johann Kroha,
Phys. Rev. Lett. 118, 117204 (2017).
DOI: https://doi.org/10.1103/PhysRevLett.118.117204106
Supplemental Material is attached to the article on arXiv.
- Inflationary quasiparticle creation and thermalization dynamics in coupled Bose-Einstein condensates107
Anna Posazhennikova, Mauricio Trujillo-Martinez, and Johann Kroha,
Phys. Rev. Lett. 116, 225304 (2016).
DOI: https://doi.org/10.1103/PhysRevLett.116.225304108
Supplemental material109
- Theory of Curie temperature enhancement in electron-doped EuO110
Tobias Stollenwerk and Johann Kroha,
Phys Rev. B 92, 205119 (2015).
- Renormalization group theory for Kondo breakdown in Kondo lattice systems111
Katinka Ballmann, Ammar Nejati and Johann Kroha,
J. Phys.: Conf. Series 592, 012090 (2015);
Proceedings of the conference on Strongly Correlated Electron Systems SCES2014, Grenoble 2014
- Tuning the ultrafast spin dynamics in carrier-density-controlled ferromagnets112
M. Matsubara, A. Schmehl, J. Mannhart, A. Melville, D. G. Schlom, M. Trujillo Martinez, A. Schroer, J. Kroha, and M. Fiebig,
Nature Communications 6, 6724 (2015).
- Temporal nonequilibrium dynamics of a Bose Josephson junction in the presence of incoherent excitations113
M. Trujillo-Martinez, A. Posazhennikova and J. Kroha,
New J. Phys. 17, 013006 (2015).
- Extended Two-Channel Kondo Phase of a Rotational Quantum Defect in a Fermi Gas114
Evaristus Fuh Chuo, Katinka Ballmann, Laszlo Borda and Johann Kroha,
J. Phys: Conf. Series 568, 012007 (2015);
Proceedings of the 27th conference on Low Temperature Physics LT27, Buenos Aires, 2014
- Identifying Kondo orbitals through spatially resolved STS115
Andrey E. Antipov, P. Ribeiro, Johann Kroha and Stefan Kirchner,
Phys. Stat. Sol. B 250, 562-567 (2013).
- Transmission statistics in a nonconservative disordered optical medium116
Zhong Yuan Lai and Oleg Zaitsev,
Phys. Rev. A 88, 023861 (2013).
- Rotational quantum impurities in a metal: Stability of the 2-channel Kondo fixed point in a magnetic field117
Katinka Ballmann and Johann Kroha,
Ann. Physik (Berlin) 524, 245-251 (2012).
- The Pseudoparticle Approach to Strongly Correlated Systems118
R. Fresard, J. Kroha and P. Wölfle,
in "Strongly Correlated Systems: Theoretical Methods",
A. Avella and F. Mancini Eds., Springer Series in Solid-State Sciences119, Volume 171, 65-101 (2012).
- Nonlinear σ model for optical media with linear absorption or gain120
Zhong Yuan Lai and Oleg Zaitsev,
Phys. Rev. A 85, 043838 (2012).
- PRL Viewpoint: Tuning correlations in a 2D electron liquid121
Johann Kroha,
Physics 4, 106 (2011).
- Thickness-dependent magnetic properties of oxygen-deficient EuO122
M. Barbagallo, T. Stollenwerk, J. Kroha, N.-J. Steinke, N.D.M. Hine, J.F.K. Cooper, C.H.W. Barnes, A. Ionescu, P.M.D.S. Monteiro, J.-Y. Kim, K.R.A. Ziebeck, C.J. Kinane, R.M. Dalgliesh, T.R. Charlton, S. Langridge,
Phys. Rev. B 84, 075219 (2011).
- A tunable two-impurity Kondo System in an atomic point contact123
J. Bork, Y.-H. Zhang, L. Diekhöner, L. Borda, P. Simon, J. Kroha, P. Wahl and Klaus Kern,
Nature Physics 7, 901–906 (2011).
DOI: https://doi.org/10.1038/nphys2076124
Supplementary material125
- Efficient construction of maximally localized Wannier functions: locality criterion and initial conditions123
Tobias Stollenwerk, Dmitry V. Chigrin, and Johann Kroha,
J. Opt. Soc. America B 28, 1951 (2011).
- Local photonic modes in periodic or random, dielectric and lasing media126
Tobias Stollenwerk, Regine Frank, Andreas Lubatsch, Oleg Zaitsev, Sergei V. Zhukovsky, Dmitry N. Chigrin, and Johann Kroha,
J. Appl. Phys. B 105 (1), 163-180 (2011).
- Scalar Wave Propagation in Random, Amplifying Media: Influence of Localization Effects on Length and Time Scales and Threshold Behavior127
R. Frank, A. Lubatsch,
Phys. Rev. A 84, 013814 (2011).
- Gas lasers with wave-chaotic resonators128
O. Zaitsev,
J. Phys. B 43, 245402 (2010).
- Diagrammatic semiclassical laser theory129
O. Zaitsev and L. Deych,
Phys. Rev. A 81, 023822 (2010).
- High-temperature signatures of quantum criticality in heavy fermion systems130
J. Kroha, M. Klein, A. Nuber, F. Reinert, O. Stockert, H. v. Löhneysen,
invited paper, International Conference on Magnetism ICM09, Karlsruhe, July 2009;
J. Phys. Cond. Mat. 22, 164203 (2010); arXiv:0907.1340
- Optically Driven Mott-HubbardSystems out of Thermodynamic Equilibrium131
A. Lubatsch and J. Kroha,
Annalen der Physik 18, 863-867 (2010).
- Theoretical Approach to Random Lasing in Thin Systems on Reflecting Substrates132
R. Frank, A. Lubatsch, J. Kroha, K. Busch,
AIP Conf. Proc. 1176, 110, (2009).
- Light Propagation in Anisotropic Disordered Media133
A. Lubatsch, R. Frank,
AIP Conf. Proc. 1176, 124, (2009).
- Nonequilibrium Josephson oscillations in Bose-Einstein condensate without dissipation134
Mauricio Trujillo Martinez, Anna Posazhennikova and Johann Kroha,
Phys. Rev. Lett. 103, 105302 (2009).
- Two atomic quantum dots interacting via coupling to BECs135
Anna Posazhennikova and Wolfgang Belzig,
arXiv:0902.3406 (2009).
- Kondo "underscreening" cloud: spin-spin correlations around a partially screened magnetic impurity136
L. Borda, M. Garst, and J. Kroha,
Phys. Rev. B 79, R100408 (2009).
- Light Transport and Localization in Diffusive Random Lasers137
R. Frank, A. Lubatsch, and J. Kroha,
J. Opt. A: Pure Appl. Opt. 11, 114012 (2009).
- Echo of the Quantum Phase Transition of CeCu6-xAux in XPS: Breakdown of Kondo Screening138
M. Klein, J. Kroha, H. v. Löhneysen, O. Stockert, and F. Reinert,
Phys. Rev. B, 79, 075111 (2009).
- Theory of Cherenkov radiation in periodic dielectric media: Emission spectrum139
Ch. Kremers, D. N. Chigrin, and J. Kroha,
Phys. Rev. A 79, 013829 (2009).
- Bistability and Mode Interaction in Microlasers140
Sergei V. Zhukovsky, Dmitry N. Chigrin, and Johann Kroha,
Phys. Rev. A 79, 033803 (2009).
- Light transport and Correlation Length in a Random Laser141
R. Frank, A. Lubatsch and J. Kroha,
Ann. Physik (Berlin) 18, 882 (2009).
- Light Transport in Disordered Systems with Absorption or Gain142
A. Lubatsch, R. Frank, and J. Kroha,
submitted to J. Stat. Mech. (2008).
- Signature of quantum criticality in photoemission spectroscopy at elevated temperature143
M. Klein, A. Nuber, F. Reinert, J. Kroha, O. Stockert, and H. v. Löhneysen,
Phys. Rev Lett. 101, 266404 (2008).
- Self-consistent study of Anderson localization in the Anderson-Hubbard model in two and three dimensions144
P. Henseler, J. Kroha, and B. Shapiro,
Phys. Rev. B 78, 235116 (2008).
- Density correlations in cold atomic gases: Atomic speckles in the presence of disorder145
Peter Henseler and Boris Shapiro,
Phys. Rev. A 77, 033624 (2008).
- Static screening and delocalization effects in the Hubbard-Anderson model146
Peter Henseler, Johann Kroha, and Boris Shapiro,
Phys. Rev. B 77, 075101 (2008).
- Simultaneous ferromagnetic metal-semiconductor transition in electron-doped EuO147
Michael Arnold and Johann Kroha,
Phys. Rev. Lett. 100, 046404 (2008).
- Coherent particle oscillations between two Bose-Einstein condensates mediated by a single localized impurity atom148
U. R. Fischer, Ch. Iniotakis, A. Posazhennikova,
Phys. Rev. A 77, 031602(R) (2008).
- Bistability and Ultrafast Mode Switching in Microlasers149
Sergei V. Zhukovsky, Dmitry N. Chigrin, A.V. Lavrinenko, and Johann Kroha,
IEEE Conference on Lasers and Electro-Optics (CLEO) Vols 1-9, pp. 2329-2330 (2008).
- Stable two-channel Kondo fixed point of an SU(3) quantum defect in a metal: renormalization group analysis and conductance spikes150
Michael Arnold, Tobias Langenbruch, and Johann Kroha,
Phys. Rev. Lett. 99, 186601 (2007).
- Strong mode coupling, bistable lasing, and mode switching dynamics in twin coupled microcavities151
S. V. Zhukovsky, D. V. Chigrin, A. V. Lavrinenko, and J. Kroha (2007).
- Coupled nanopillar waveguides: optical properties and applications152
Dmitry N. Chigrin, Sergei V. Zhukovsky, Andrei V. Lavrinenko, and Johann Kroha,
Phys. Stat. Sol. A 204 (11) 3647 (2007).
- Universality in Voltage-driven Nonequilibrium Phase Transitions153
Johann Kroha, Michael Arnold, and Beate Griepernau,
J. Low Temp. Phys. 147 (3-4), 505 (2007);
dedicated to Prof. Hilbert von Löhneysen on the occasion of his 60th birthday.
- High Resolution Photoemission Study on Low-TK Ce Systems: Kondo Resonance, Crystal Field Structures, and their Temperature Dependence154
D. Ehm, S. Schmidt, S. Hüfner, F. Reinert, J. Kroha, P. Wölfle, O. Stockert, C. Geibel and H. von Löhneysen,
Phys. Rev. B 76, 045117 (2007).
- Switchable lasing in multimode microcavities155
Sergei V. Zhukovsky, Dmitry N. Chigrin, Andrei Lavrinenko, Johann Kroha,
Phys. Rev. Lett. 99, 073902 (2007).
- Strong vs. Weak Coupling Duality and Coupling Dependence of the Kondo Temperature in the Two-Channel Kondo Model156
Christian Kolf and Johann Kroha,
Phys. Rev. B 75, 045129 (2007).
- Simultaneous ferromagnetic and and semiconductor-metal transition in EuO157
Michael Arnold and Johann Kroha,
Physica C 460, 1137 (2007).
- Polariton bandstructure of disordered metallic photonic crystal slabs158
D. Nau, A. Schönhardt, D. N. Chigrin, H. Kroha, A. Christ und H. Giessen,
Physica Status Solidi B 244 (4), 1262 (2007).
- Selective lasing in multimode periodic and non-periodic nanopillar waveguides159
Sergei V. Zhukovsky, Dmitry N. Chigrin, Andrei Lavrinenko, Johann Kroha,
Physica Status Solidi B 244 (4), 1211 (2007).
- Numerical modelling of lasing in microstructures
Sergei V. Zhukovsky and Dmitry N. Chigrin,
Physica Status Solidi B 244 (10), 3515-3527 (2007).
- Spin Correlations and Finite-Size Effects in the One-dimensional Kondo Box160
Thomas Hand, Johann Kroha, Hartmut Monien,
Phys. Rev. Lett. 97, 136604 (2006); cond-mat/0602352
- Low-loss resonant modes in deterministically aperiodic nanopillar waveguides161
Sergei V. Zhukovsky, Dmitry N. Chigrin, Johann Kroha
J. Opt. Soc. Am. B 23, 2265 (2006); cond-mat/0601296
- Theory of strong localization effects of light in disordered loss or gain media162
Regine Frank, Andreas Lubatsch, and Johann Kroha
Phys. Rev. B 73, 245107 (2006); cond-mat/0511331
- Nonequilibrium electron transport through quantum dots in the Kondo regime163
P. Wölfle, J. Paaske, A. Rosch, and J. Kroha
AIP Conference Proceedings 850, 1378 (2006); (LT24, Orlando, 2005).
- Comment on "Fano Resonance for Anderson Impurity Systems"164
Ch. Kolf, J. Kroha, M. Ternes, and W.-D. Schneider
Phys. Rev. Lett. 96, 019701 (2006); cond-mat/0503669
- Influence of correlation and temperature on the electronic structure of bulk and thin film GdN165
Satadeep Bhattacharjee and S. Mathi Jaya,
Eur. Phys. J. B 49, 305 (2006).
- pi-junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads166
Gabriel Sellier, Thilo Kopp, Johann Kroha, and Yuri S. Barash,
Phys. Rev. B 72, 174502 (2005); cond-mat/0504649
Selected for Virtual Journal of Applications of Superconductivity, VJSuper167, issue Nov. 15 (2005)168.
- Spectral self-similarity in fractal one-dimensional photonic structures169
S. V. Zhukovsky and A. V. Lavrinenko
Photonics and Nanostructures, 3, 129 (2005).
- Numerical characterization of nanopillar photonic crystal waveguides and directional couplers
D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres
Opt. Quantum Electron. 37 (2005), pp. 331-341.
- Theory of light diffusion in disordered media with linear absorption or gain170
A. Lubatsch, J. Kroha, and K. Busch,
Phys. Rev. B 71, 184201 (2005); cond-mat/0412083
- Photonic quasicrystals for applications in WDM systems
J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres,
Phys. Stat. Sol. (a), 202 (2005) No 6, pp. 997-1001.
- Resonant add-drop filter based on photonic quasicrystal171
J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres
Opt. Express, 13 (2005) No 3, pp. 826-835 (Cover story).
- Conserving Diagrammatic Approximations for Quantum Impurity Models: NCA and CTMA172
J. Kroha and P. Wölfle,
Invited article, in a Special Topics Section of JPSJ, "Kondo Effect -- 40 Years after the Discovery", J. Phys. Soc. Jpn. 74 (1), 16 (2005); cond-mat/0410273
- The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group173
A. Rosch, J. Paaske, J. Kroha, and P. Wölfle
Invited article, in a Special Topics Section of JPSJ, "Kondo Effect -- 40 Years after the Discovery", J. Phys. Soc. Jpn. 74 (1), 118 (2005); cond-mat/0408506
- Fermi Liquid Properties of the Anderson Impurity Model within a Conserving Pseudoparticle Approach174
S. Kirchner, J. Kroha, and P. Wölfle,
in Proceedings of the International Conference on "Strongly Correlated Electron Systems SCES04", Karlsruhe, 2004; Physica B 359-261C, 756 (2005).
- Non-equilibrium Transport Through Quantum Dots in the Kondo Regime175
J. Paaske, A. Rosch, P. Wölfle, and J. Kroha,
Contributed paper to the International Conference on Low-Temperature Physics LT24, Orlando, Florida (2005).
- Radiation pattern of a classical dipole in a photonic crystal: photon focusing176
D. N. Chigrin,
Phys. Rev. E 70, 056611 (2004).
- Dynamical Properties of the Anderson Impurity Model within a Diagrammatic Pseudoparticle Approach177
S. Kirchner, J. Kroha, and P Wölfle,
Phys. Rev. B 70, 165102 (2004); cond-mat/0404311
- Nonequilibrium Transport through a Kondo Dot: Decoherence Effects178
J. Paaske, A. Rosch, J. Kroha, and P Wölfle,
Phys. Rev. B 70, 155301 (2004); cond-mat/0401180
-
Conductance Quasi-quantization of quantum point contacts179
S. Kirchner, J. Kroha, and E. Scheer,
Lecture Notes in Physics 630, 303 (2004).
- Pseudogaps in the t-J model: Extended DMFT study180
K. Haule, A. Rosch, J. Kroha and P Wölfle,
Phys. Rev. B 68, 155119 (2003).
- Non-equilibrium Transport and Relaxation in Diffusive Nanowires with Kondo Impurities181
J. Kroha, A. Rosch, J. Paaske, and P. Wölfle,
Adv. Solid State Phys. (B. Kramer Ed.) 43, 223 (Springer, 2003).
- Non-Equilibrium Transport through a Kondo-Dot in a Magnetic Field: Perturbation Theory and Poor Man's Scaling182
A. Rosch, J. Paaske, J. Kroha and P Wölfle,
Phys. Rev. Lett. 90, 076804 (2003).
- Conductance Quasi-quantization of Quantum Point Contacts: Why Tight-binding Models are Insufficient
S. Kirchner, J. Kroha, P. Wölfle, and E. Scheer
in "Anderson Localization and its Ramifications: Disorder Phase Coherence and Electron Correlations",
T. Brandes and S. Kettemann Eds., 303 (Springer 2003).
- Structure and Transport in Multi-orbital Kondo Systems183
J. Kroha, S. Kirchner, G. Sellier, P. Wölfle, D. Ehm, F. Reinert, S. Hüfner, and C. Geibel,
Invited paper, XXIII. International Conference on Low Temperature Physics LT23, Hiroshima, 2002.
Physica E 18, 69 (2003).
- Fermi and Non-Fermi liquid behavior of quantum impurity models: Diagrammatic Pseudoparticle Approach184
J. Kroha and P. Wölfle
Invited Article, Proceedings of the International Conference on ``Mathematical Methods in Physics'', Montreal 2000;
in ``Theoretical Methods for Strongly Correlated Electrons'',
D. Senechal, A.-M. Tremblay, and C. Bourbonnais Eds.,
CRM Series in Mathematical Physics (Springer, New York, 2003).
- Interplay between the Geometrical and the Electronic Structure in Quasicrystals185
J. Kroha, D. Walther, and R. von Baltz,
in "Quasicrystals - Structure and Physical Properties",
H.-R. Trebin Hrsg., pp 236 (Wiley, 2003).
- High Resolution PES Investigations on the Prototype Heavy Fermion Compound CeCu6186
D. Ehm, F. Reinert, J. Kroha, O. Stockert, and S. Hüfner,
Acta Physica Polonica (Sp. Iss. SI) 34, 951 (2003).
- Selfconsistent Auxiliary Particle Theory for Strongly Correlated Fermion Systems
S. Kirchner, J. Kroha, and P. Wölfle
Invited paper, in ``High Performance Computing in Science and Engineering 2002",
E. Krause and W. Jäger Eds. (Springer, 2003), ISBN 3-54043860-2.
- Nonequilibrium Electron Transport through Nanostructures: Correlation Effects187
P. Wölfle, A. Rosch, J. Paaske, and J. Kroha.
- Pseudogaps in an Incoherent Metal188
K. Haule, A. Rosch, J. Kroha, and P. Wölfle,
Phys. Rev. Lett., 89 236402 (2002).
- Non-equilibrium Transport through a Kondo-Dot in a Magnetic Field189
P. Wölfle, A. Rosch, J. Paaske, and J. Kroha,
Adv. Solid State Phys. 42, 175, B. Kramer Ed. (Springer, 2002).
- Self-consistent Conserving Theory for Quantum Impurity Systems: Renormalization Group Analysis190
Stefan Kirchner and Johann Kroha,
J. Low Temp. Phys. 126, 1233 (2002).
- Quantitative Line Shape Analysis of the Kondo Resonance of Cerium Compounds191
D. Ehm, F. Reinert, S. Schmidt, G. Nicolay, and S. Hüfner, J. Kroha, O. Trovarelli and C. Geibel,
in Proceedings of the SCES 2001 conference, Physica B 312, 663 (2002).
- Theory of the non-equilibrium quasiparticle distribution induced by Kondo defects192
J. Kroha and A. Zawadowski,
Phys. Rev. Lett. 88, 176803 (2002).
- Anderson impurity model at finite Coulomb interaction U: The generalized Non-crossing Approximation193
K. Haule, S. Kirchner, J. Kroha, and P. Wölfle,
Phys. Rev. B, 64, 155111 (2001).
- The Kondo effect in quantum dots at high voltage: Universality and scaling194
A. Rosch, J. Kroha, and P. Wölfle,
Phys. Rev. Lett., 87, 156802 (2001).
- Comment on ``Non--equilibrium Electron Distribution in Presence of Kondo Impurities'' (cond-mat/0102150.v2)195
J. Kroha and A. Zawadowski, cond-mat/0105026.
- Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2196
F. Reinert, D. Ehm, S. Schmidt, G. Nicolay, and S. Hüfner, J. Kroha, O. Trovarelli and C. Geibel,
Phys. Rev. Lett., 87, 106401 (2001).
- Non-equilibrium electronic transport and interactions in short metallic nanobridges197
H. B. Weber, R. Häussler, H. v. Löhneysen and J. Kroha,
Phys. Rev. B 63, 165426 (2001).
- Kondo effect in non-equilibrium198
Theory of energy relaxation induced by dynamical defects in diffusive nanowires
J. Kroha,
invited paper, in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 133 (Kluwer Academic Publishers, 2001).
- Theory of STM spectroscopy of magnetic ions on metal surfaces199
O. Ujsaghy, J. Kroha, L. Szunyogh and A. Zawadowski,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 245 (Kluwer Academic Publishers, 2001).
- Pair breaking in s-wave superconductors by two-channel Kondo impurities200
G. Sellier, S. Kirchner and J. Kroha,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 241 (Kluwer Academic Publishers, 2001).
- Generalized conductance sum rule in atomic break junctions201
S. Kirchner, J. Kroha and E. Scheer,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 215 (Kluwer Academic Publishers, 2001).
- Zero-bias transport anomaly in metallic nanobridges: Magnetic field dependence and universal conductance fluctuations202
H. B. Weber, R. Häussler, H. v. Löhneysen and J. Kroha,
Invited paper, in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 53 (Kluwer Academic Publishers, 2001).
- Diagrammatic theory of the Anderson impurity model with finite Coulomb interaction203
K. Haule, S. Kirchner, J. Kroha and P. Wölfle,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 211 (Kluwer Academic Publishers, 2001).
- Diagrammatic theory of Anderson impurity and lattice models: Fermi and non-Fermi liquid behavior204
Johann Kroha and Peter Wölfle,
Invited paper, in Proceedings of the NATO Advanced Research Workshop ``Open problems in strongly correlated electron systems'', Bled, Slowenia, April 26--30, 2000, J. Bonca, P. Prelovsek, A. Ramsak und S. Sarkar eds., NATO Science Series II, Vol. 15, 101 (Kluwer Academic Publishers, Dordrecht, 2001).
- Diagrammatic theory of the Anderson impurity model with finite Coulomb interaction203
K. Haule, S. Kirchner, H. Kroha and P. Wölfle,
in Proceedings of the NATO Advanced Research Workshop ``Open problems in strongly correlated electron systems'', Bled, Slowenia, April 26--30, 2000, J. Bonca, P. Prelovsek, A. Ramsak und S. Sarkar eds., NATO Science Series II, Vol. 15, 413 (Kluwer Academic Publishers, Dordrecht, 2001).
- Electronic stabilization of amorphous and quasicrystalline metals: Importance of quantum correlations205
Hans Kroha,
Mat. Sci. Eng. A, 294-296, 500 (2000).
- Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity206
O. Újsághy, J. Kroha, L. Szunyogh and A. Zawadowski,
Phys. Rev. Lett. 85, 2557 (2000).
- Energy and phase relaxation in non-equilibrium diffusive nano-wires with two-level systems207
J. Kroha,
Invited paper, Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Regensburg, 2000.
Festkörperprobleme/Adv. Solid State Phys. 40, 267 (2000).
- Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation208
T. Schauerte, J. Kroha and P. Wölfle,
Phys. Rev. B 62, 4394 (2000).
- Fermi and non-Fermi liquid behavior in quantum impurity systems: Conserving slave boson theory209
Johann Kroha and Peter Wölfle,
Invited paper, Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Münster, 1999.
Festkörperprobleme/Adv. Solid State Phys. 39, 271 (1999).
- Electron-electron interaction effects in a diffusive Cu nanobridge210
H. B. Weber, R. Häussler, H. v. Löhneysen, P. Pfundstein and J. Kroha,
Jahrbuch 1998, Physikalisches Institut, Universität Karlsruhe (1999).
- Correlation-enhanced Friedel oscillations in amorphous and quasicrystalline alloys211
J. Kroha,
in Aperiodic'97, Proceedings of the international conference on aperiodic crystals,
M. de Boisieu, J.-L. Verger-Gaugry and R. Currat, eds., 499 (World Scientific, Singapore, 1999).
- The Kondo box: A magnetic impurity in an ultrasmall metallic grain212
Wolfgang B. Thimm, Johann Kroha and Jan v. Delft,
Phys. Rev. Lett. 82, 2143 (1999).
- Correlation-enhanced Friedel oscillations in amorphous alloys and quasicrystals213
Johann Kroha,
J. Noncryst. Solids, 250-252, 865 (1999).
- Fermi and non-Fermi liquid behavior in quantum impurity systems214
Johann Kroha and Peter Wölfle,
in The Cracow School of Theoretical Physics, XXXVIII. Course: New Quantum Phases, Elementary Excitations and Renormalization in High Energy and Condensed Matter Physics, Acta Phys. Pol. B 29 (12), 3781 (1998)215.
- Fermi and non-Fermi liquid behavior of local-moment systems within a conserving slave boson theory216
Johann Kroha and Peter Wölfle,
in "Magnetism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds",
M. Donath, P. A. Dowben and W. Nolting, eds., pp. 335, World Scientific (Singapore, 1998).
- Non-equilibrium dynamics of the Anderson impurity model217
M. H. Hettler, J. Kroha, and S. Hershfield,
Phys. Rev. B 58, 5649 (1998).
- Antiferromagnetic interlayer exchange coupling across an amorphous metallic spacer layer218
D. E. Bürgler, D. M. Schaller, C. M. Schmidt, F. Meisinger, J. Kroha, J. McCord, A. Hubert, and H.-J. Güntherodt,
Phys. Rev. Lett. 80, 4983 (1998).
- Unified description of Fermi- and non-Fermi liquid behavior in a conserving slave boson approximation for strongly correlated impurity models219
J. Kroha, P. Wölfle, and T. A. Costi,
Phys. Rev. Lett. 79, 261 (1997).
- Disorder-enhanced electron correlations near the crystalline-amorphous transition220
J. Kroha, A. Huck, and T. Kopp,
Czech. J. Phys. 46, (S4) 2275 (1996).
- Conserving slave boson approximations for the Anderson model beyond NCA221
J. Kroha, T. A. Costi, P. Wölfle, P. Hirschfeld, and K. A. Muttalib,
Czech. J. Phys. 46, (S4), 1897 (1996).
- Spectral properties of the Anderson impurity model: Comparison of numerical-renormalization-group and noncrossing-approximation results222
T. A. Costi, J. Kroha, and P. Wölfle,
Phys. Rev. B 53, 1850 (1996).
- Coulomb interaction and disorder at q = 2k_F: A novel instability of the Fermi sea and implications for amorphous alloys223
J. Kroha, A. Huck, and T. Kopp,
Phys. Rev. Lett. 75, 4278 (1995).
- Infrared divergences in the Kondo problem224
T. A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle,
Physica C235-240, 2287 (1994).
- Nonlinear conductance for the two channel Anderson model225
M. H. Hettler, J. Kroha, and S. Hershfield,
Phys. Rev. Lett. 73, 1967 (1994).
- Numerical renormalization group study of pseudo-fermion and slave-boson spectral functions in the single impurity Anderson model226
T. A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle,
Phys. Rev. Lett. 73, 1275 (1994).
- Localization of classical waves in a random medium: A self-consistent theory227
J. Kroha, C. M. Soukoulis, and P. Wölfle,
Phys. Rev. B 47, 11093 (1993).
- Diffusion of classical waves in random media
J. Kroha, C. M. Soukoulis, and P. Wölfle,
in "Photonic band gaps and localization", C. M. Soukoulis, ed., NATO ASI Series B 308, 63 (Plenum Press, 1993).
- Conserving slave boson approach to strongly correlated Fermi systems: Single impurity Anderson model228
J. Kroha, P. Hirschfeld, K. A. Muttalib, and P. Wölfle,
Solid State Comm. 83 (12), 1003 (1992).
- X-ray photoemission spectra of impure simple metals229
Y. Chen and J. Kroha,
Phys. Rev. B 46, 1332 (1992).
- Diagrammatic self-consistent theory of Anderson localization for the tight-binding model230
J. Kroha,
in "Anderson localization and mesoscopic Fluctuations",
B. Kramer, G. Schön, eds.,
Physica A 167, 231 (1990).
- Self-consistent theory of Anderson localization for the tight-binding model with site-diagonal disorder231
J. Kroha, T. Kopp, and P. Wölfle,
Phys. Rev. B 41, R888 (1990).
Links
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2023
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2024
- https://www.pi.uni-bonn.de/kroha/en/publications/publications
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2012
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2013
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2014
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2016
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2015
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2017
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2018
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2019
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2020
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2022
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2021
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2001
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2002
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2003
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2004
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2005
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2006
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2007
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2008
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2009
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2010
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2011
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1990
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1991
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1992
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1993
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1994
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1995
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1996
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1997
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1998
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1999
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2000
- https://arxiv.org/abs/2505.20593
- https://arxiv.org/abs/2503.16695
- https://arxiv.org/abs/2412.16012
- https://arxiv.org/abs/2408.07345
- https://doi.org/10.1103/PhysRevB.111.035117
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#top
- https://arxiv.org/abs/2312.06931
- https://doi.org/10.1103/PhysRevB.109.235103
- https://arxiv.org/abs/2308.00968
- https://doi.org/10.1103/PhysRevResearch.6.013220
- https://arxiv.org/abs/2311.13301
- https://doi.org/10.1002/andp.202300505.
- https://arxiv.org/abs/2312.13366
- https://doi.org/10.1103/PhysRevResearch.6.L042008
- https://onlinelibrary.wiley.com/doi/full/10.1002/piuz.202370606
- https://arxiv.org/abs/2208.05932
- https://www.nature.com/articles/s41567-023-02156-7
- https://arxiv.org/abs/2302.13313
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.L201104
- https://arxiv.org/abs/2106.07519
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.L121111
- https://arxiv.org/abs/2209.11556
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.125146
- https://arxiv.org/abs/2204.12422
- https://doi.org/10.1103/PhysRevA.106.043321
- https://arxiv.org/abs/2203.05503
- https://doi.org/10.1103/PhysRevResearch.4.033184
- https://arxiv.org/abs/2203.14625
- https://doi.org/10.1103/PhysRevA.106.033316
- https://arxiv.org/abs/2110.04793
- https://doi.org/10.21468/SciPostPhysCore.5.2.030
- https://arxiv.org/abs/2106.14860
- https://doi.org/10.1002/andp.202100581
- https://www.kroha.uni-bonn.de/publications/phasen-eines-bose-einstein-kondensats-aus-licht
- https://doi.org/10.1002/piuz.202170404
- https://arxiv.org/abs/2010.15829
- https://doi.org/10.1126/science.abe9869
- https://arxiv.org/abs/2010.16150
- https://doi.org/10.1103/PhysRevResearch.3.013260
- https://arxiv.org/abs/2007.06331
- https://doi.org/10.1103/PhysRevA.103.033311%20
- https://arxiv.org/abs/1910.13648
- https://doi.org/10.1038/s41467-020-18407-7
- https://arxiv.org/abs/2004.07719v2
- https://doi.org/10.1103/PhysRevResearch.2.033296
- https://arxiv.org/abs/2003.11140
- https://doi.org/10.1103/PhysRevB.102.045144
- https://arxiv.org/abs/1911.03770
- https://doi.org/10.1038/s41467-020-17510-z
- https://rdcu.be/b5RNz
- https://arxiv.org/abs/2001.11280
- https://doi.org/10.1103/PhysRevB.101.235404
- https://arxiv.org/abs/1908.00883
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.043803
- https://link.aps.org/doi/10.1103/PhysRevB.100.045401
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045401
- https://arxiv.org/abs/1810.07412
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.096401
- https://arxiv.org/abs/1806.00376
- https://link.aps.org/doi/10.1103/PhysRevA.98.023626
- https://arxiv.org/abs/1703.04443
- https://doi.org/10.1038/s41567-018-0228-3
- https://rdcu.be/3KAs
- https://arxiv.org/abs/1705.01754
- http://onlinelibrary.wiley.com/wol1/doi/10.1002/andp.201700124/full
- http://www.advancedsciencenews.com/quantum-system-thermalization/
- https://arxiv.org/abs/1710.00192
- https://arxiv.org/abs/1612.06620
- https://arxiv.org/abs/1612.03338
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.117204
- http://arxiv.org/abs/1603.04898
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.225304
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/bec_thermalization_supplmat.pdf
- http://arxiv.org/abs/1509.01422
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ballmann_2015_j-_phys-__conf-_ser-_592_012090.pdf
- http://arxiv.org/abs/1304.2509
- http://iopscience.iop.org/1367-2630/17/1/013006/article
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2ck-su3_lt27.pdf
- http://onlinelibrary.wiley.com/doi/10.1002/pssb.201200936/abstract
- http://pra.aps.org/abstract/PRA/v88/i2/e023861
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2ck_adp2012.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/sb_review_2011.pdf
- https://springerlink3.metapress.com/content/0171-1873/
- http://pra.aps.org/abstract/PRA/v85/i4/e043838
- http://physics.aps.org/articles/v4/106
- http://arxiv.org/abs/1104.4363
- http://arxiv.org/abs/1108.0869
- https://doi.org/10.1038/nphys2076
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/supplementary_v2.pdf
- https://www.kroha.uni-bonn.de/publications/papers/for557_report_final
- http://arxiv.org/abs/1106.3020
- http://arxiv.org/abs/1010.5985
- http://dx.doi.org/10.1103/PhysRevA%2E81%2E023822
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/kroha_jpcm_22_16_164203.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/annalenphysik_18_863_2010.pdf
- http://link.aip.org/link/?APCPCS/1176/110/1
- http://link.aip.org/link/?APCPCS/1176/124/1
- http://arxiv.org/abs/0903.5459
- http://arxiv.org/abs/0902.3406
- http://arxiv.org/abs/0811.1032
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/joa_11_114012_2009.pdf
- http://arxiv.org/abs/0811.0749
- http://arxiv.org/abs/0808.3519
- http://arxiv.org/abs/0804.3758
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/annalenphysik_18_882_2010.pdf
- http://www.th.physik.uni-bonn.de/kroha/...
- http://arxiv.org/abs/0806.3296
- http://link.aps.org/doi/10.1103/PhysRevB.78.235116
- http://link.aps.org/doi/10.1103/PhysRevA.77.033624
- http://link.aps.org/doi/10.1103/PhysRevB.77.075101
- http://arxiv.org/abs/0708.0416
- http://arxiv.org/abs/0709.1542
- https://doi.org/10.1109/CLEO.2008.4552104
- http://www.arxiv.org/abs/0707.4152
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/spie-icono.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/cnpw-review.pdf
- http://www.lanl.gov/abs/cond-mat/0610280
- http://www.arxiv.org/abs/cond-mat/0702360
- http://www.arxiv.org/abs/cond-mat/0701619
- http://xxx.arxiv.org/abs/cond-mat/0610631
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/euo_physicac.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/disorder-physstatsol-b_070128.pdf
- http://xxx.arxiv.org/abs/cond-mat/0611351
- http://www.lanl.gov/abs/cond-mat/0602352
- http://www.lanl.gov/abs/cond-mat/0601296
- http://www.lanl.gov/abs/cond-mat/0511331
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt24_proc.pdf
- http://www.lanl.gov/abs/cond-mat/0503669
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/gdn.pdf
- http://www.lanl.gov/abs/cond-mat/0504649
- http://www.vjsuper.org/
- http://scitation.aip.org/dbt/dbt.jsp?KEY=VIRT03&Volume=CURVOL&Issue=CURISS
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/photns_zhukovsky05.pdf
- http://www.lanl.gov/abs/cond-mat/0412083
- http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-826
- http://www.lanl.gov/abs/cond-mat/0410273
- http://www.lanl.gov/abs/cond-mat/0408506
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/sces04.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt24.pdf
- http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000070000005056611000001&idtype=cvips&gifs=yes
- http://www.lanl.gov/abs/cond-mat/0404311
- http://xxx.lanl.gov/abs/cond-mat/0401180
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lectnotesphys630_303_2004.pdf
- http://xxx.lanl.gov/abs/cond-mat/0304096
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/dpg03.ps
- http://xxx.lanl.gov/abs/cond-mat/0202404
- http://arxiv.org/abs/cond-mat/0702578
- http://xxx.lanl.gov/abs/cond-mat/0105491
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/spqc_report.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/cecu6proc.ps
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/hvar.ps
- http://xxx.lanl.gov/abs/cond-mat/0205347
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/kondo_rg.ps
- http://xxx.lanl.gov/abs/cond-mat/0202351
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ceru2si2proc.ps
- http://xxx.lanl.gov/abs/cond-mat/0104151
- http://xxx.lanl.gov/abs/cond-mat/0105490
- http://xxx.lanl.gov/abs/cond-mat/0105032
- http://xxx.lanl.gov/abs/cond-mat/0105026
- http://xxx.lanl.gov/abs/cond-mat/0104037
- http://xxx.lanl.gov/abs/cond-mat/0007077
- http://xxx.lanl.gov/abs/cond-mat/0102185
- http://xxx.lanl.gov/abs/cond-mat/0009351
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2cksc.ps
- http://xxx.lanl.gov/abs/cond-mat/0010103
- http://xxx.lanl.gov/abs/cond-mat/0007333
- http://xxx.lanl.gov/abs/cond-mat/0007274
- http://xxx.lanl.gov/abs/cond-mat/0005483
- http://xxx.lanl.gov/abs/cond-mat/9911263
- http://xxx.lanl.gov/abs/cond-mat/0005166
- http://xxx.lanl.gov/abs/cond-mat/0102188
- http://xxx.lanl.gov/abs/cond-mat/9912007
- http://xxx.lanl.gov/abs/cond-mat/0007103
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/jahrbuch98.ps
- http://xxx.lanl.gov/abs/cond-mat/9707295
- http://xxx.lanl.gov/abs/cond-mat/9809416
- http://xxx.lanl.gov/abs/cond-mat/9810068
- https://arxiv.org/abs/cond-mat/9804061
- https://www.actaphys.uj.edu.pl/R/29/12/3781
- http://xxx.lanl.gov/abs/cond-mat/9804061
- http://xxx.lanl.gov/abs/cond-mat/9707209
- http://xxx.lanl.gov/abs/cond-mat/9802148
- http://xxx.lanl.gov/abs/cond-mat/9611096
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt21a.ps
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt21b.ps
- http://xxx.lanl.gov/abs/cond-mat/9507008
- http://arxiv.org/abs/cond-mat/9411122
- http://www.th.physik.uni-bonn.de/th/Groups/Kroha/PAPERS/IR_Kondo.ps.gz
- http://arxiv.org/abs/cond-mat/9405059
- http://xxx.lanl.gov/abs/cond-mat/9404097
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb47_11093_93.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ssc_1992.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb46_1332_92.pdf
- https://arxiv.org/abs/1501.05465
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb41_r888_90.ps