2025
- Stabilizing open photon condensates by ghost-attractor dynamics37
Aya Abouelela, Michael Turaev, Roman Kramer, Moritz Janning, Michael Kajan, Sayak Ray, Johann Kroha
- Discovery of a non-Hermitian phase transition in a bulk condensed-matter system38
Jingwen Li, Michael Turaev, Masakazu Matsubara, Kristin Kliemt, Cornelius Krellner, Shovon Pal, Manfred Fiebig, Johann Kroha
- Missing spectral weight in a paramagnetic heavy-fermion system39
Jingwen Li, Debankit Priyadarshi, Chia-Jung Yang, Ulli Pohl, Oliver Stockert, Hilbert von Loehneysen, Shovon Pal, Manfred Fiebig, Johann Kroha
Phys. Rev. B 111, 035117 (2025)
DOI: https://doi.org/10.1103/PhysRevB.111.03511740
- Kondo coherence versus superradiance in terahertz radiation-driven heavy-fermion systems42
Chia-Jung Yang, Michael Woerner, Oliver Stockert, Hilbert v. Löhneysen, Johann Kroha, Manfred Fiebig, and Shovon Pal
Phys. Rev. B 109, 235103 (2024)
DOI: https://doi.org/10.1103/PhysRevB.109.23510343
- Non-Markovian dynamics of open quantum systems via auxiliary particles with exact operator constraint44
Tim Bode, Michael Kajan, Francisco Meirinhos, Johann Kroha
Phys. Rev. Research 6, 013220 (2024)
DOI: https://doi.org/10.1103/PhysRevResearch.6.01322045. - Temporal Bistability in the Dissipative Dicke-Bose-Hubbard System46
Tianyi Wu, Sayak Ray, Johann Kroha
Annalen der Physik, 2300505 (2024)
DOI: https://doi.org/10.1002/andp.202300505.47
- Strange-metal behavior without fine-tuning in PrV2Al2048
Marvin Lenk, Fei Gao, Johann Kroha, Andriy H. Nevidomskyy,
Phys. Rev. Res. 6, L042008 (2024)
DOI: https://doi.org/10.1103/PhysRevResearch.6.L04200849
- Kritische Verlangsamung und Vernichtung von Fermionen50
Chia-Jung Yang, Manfred Fiebig, Shovon Pal, Johann Kroha,
Physik in unserer Zeit 54 (6), 269-270 (2023).
DOI: https://doi.org/10.1002/piuz.20237060650 - Critical slowing down near a magnetic quantum phase transition with fermionic breakdown51
Chia-Jung Yang, Kristin Kliemt, Cornelius Krellner, Johann Kroha, Manfred Fiebig, Shovon Pal,
Nature Physics 19, 1605-1610 (2023).
DOI: https://doi.org/10.1038/s41567-023-02156-752 - Photoemission signature of the competition between magnetic order and Kondo effect in CeCoGe353
Peng Li, Huiqing Ye, Yong Hu, Yuan Fang, Zhiguang Xiao, Zhongzheng Wu, Zhaoyang Shan, Ravi P. Singh, Geetha Balakrishnan, Dawei Shen, Yi-feng Yang, Chao Cao, Nicolas C. Plumb, Michael Smidman, Ming Shi, Johann Kroha, Huiqiu Yuan, Frank Steglich and Yang Liu,
Phys. Rev. B 107, L201104 (2023), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevB.107.L20110454 - Quantum spin liquid in an RKKY-coupled two-impurity Kondo system55
Krzysztof P. Wójcik and Johann Kroha,
Phys. Rev. B 107, L121111 (2023).
DOI: https://doi.org/10.1103/PhysRevB.107.L12111156 - Asymmetry effects on the phases of RKKY-coupled two-impurity Kondo systems57
Krzysztof P. Wójcik and Johann Kroha,
Phys. Rev. B 107, 125146 (2023).
DOI: https://doi.org/10.1103/PhysRevB.107.12514658
- Classical route to ergodicity and scarring phenomena in two component Bose-Josephson junction59
Debabrata Mondal, Sudip Sinha, Sayak Ray, Johann Kroha, and Subhasis Sinha,
Phys. Rev. A 106, 043321 (2022).
DOI: https://doi.org/10.1103/PhysRevA.106.04332160
- Real- and Fourier space observation of the anomalous pi mode in Floquet engineered plasmonic waveguide arrays61
Anna Sidorenko, Zlata Fedorova (Cherpakova), Johann Kroha, Stefan Linden,
Phys. Rev. Research 4, 033184 (2022).
DOI: https://doi.org/10.1103/PhysRevResearch.4.03318462
- Chaos onset in large rings of Bose-Einstein condensates63
Damian Wozniak, Johann Kroha, Anna Posazhennikova,
Phys. Rev. A 106, 033316 (2022).
DOI: https://doi.org/10.1103/PhysRevA.106.03331664
- Adaptive Numerical Solution of Kadanoff-Baym Equations65
Francisco Meirinhos, Michael Pohl, Johann Kroha, Tim Bode,
SciPost Phys. Core 5, 030 (2022).
DOI: https://doi.org/10.21468/SciPostPhysCore.5.2.03066
- Non-local correlations and entanglement of ultracold bosons in the 2D Bose-Hubbard lattice at finite temperature67
Ulli Pohl, Sayak Ray, Johann Kroha,
Ann. Phys. (Berlin) 534, 2100581 (2022).
DOI: https://doi.org/10.1002/andp.20210058168 (open access)
- Phasen eines Bose-Einstein-Kondensats aus Licht69
Fahri Öztürk, Julian Schmitt, Johann Kroha, Martin Weitz,
Phys. Unserer Zeit 52 (4), 162 (2021).
DOI: https://doi.org/10.1002/piuz.20217040470
- Observation of a non-Hermitian phase transition in an optical quantum gas71
Fahri Emre Öztürk, Tim Lappe, Göran Hellmann, Julian Schmitt, Jan Klaers, Frank Vewinger, Johann Kroha, Martin Weitz,
Science 372 (6537), 88-91 (2021).
DOI: https://doi.org/10.1126/science.abe986972
- Dissipation engineered directional filter for quantum ratchets73
Zlata Fedorova, Christoph Dauer, Anna Sidorenko, Sebastian Eggert, Johann Kroha, Stefan Linden,
Phys. Rev. Research 3, 013260, (2021), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevResearch.3.01326074
- Expansion dynamics in two-dimensional Bose-Hubbard lattices: BEC and thermal cloud75
Mauricio Trujillo-Martinez, Anna Posazhennikova, and Johann Kroha,
Phys. Rev. A 103, 033311(2021).
DOI: https://doi.org/10.1103/PhysRevA.103.03331176
- Oxygen vacancy-driven orbital multichannel Kondo effect in Dirac nodal-line metals IrO2 and RuO277
Sheng-Shiuan Yeh, Ta-Kang Su, An-Shao Lien, Farzaneh Zamani, Johann Kroha, Chao-Ching Liao, Stefan Kirchner, and Juhn-Jong Lin,
Nature Communications 11, 4749 (2020).
DOI: https://doi.org/10.1038/s41467-020-18407-778
- Teraherz Conductivity of Heavy-fermion Systems from Time-resolved Spectroscopy79
Chia-Jung Yang, Shovon Pal, Farzaneh Zamani, Kristin Kliemt, Cornelius Krellner, Oliver Stockert, Hilbert v. Löhneysen, Johann Kroha, and Manfred Fiebig,
Phys. Rev. Research 2, 033296 (2020).
DOI: https://doi.org/10.1103/PhysRevResearch.2.03329680
- Magnetic Kondo regimes in a frustrated half-filled trimer81
K. P. Wojcik, I. Weyman, J. Kroha,
Phys. Rev. B 102, 045144 (2020).
DOI: https://doi.org/10.1103/PhysRevB.102.04514482
- Observation of topological transport quantization by dissipation in fast Thouless pumps83
Z. Fedorova, H. Qiu, S. Linden, J. Kroha,
Nature Communications 11, 3758 (2020).
DOI: https://doi.org/10.1038/s41467-020-17510-z84
Nature SharedIt link: https://rdcu.be/b5RNz85
- Majorana-Kondo interplay in T-shaped double quantum dots86
I. Weyman, K. P. Wojcik, and P. Majek,
Phys. Rev. B 101, 235404 (2020).
DOI: https://doi.org/10.1103/PhysRevB.101.23540487
- Fluctuation dynamics of an open photon Bose-Einstein condensate88
F. E. Ozturk, T. Lappe, G. Hellmann, J. Schmitt, J. Klaers, F. Vewinger, J. Kroha, M. Weitz,
Phys. Rev. A 100, 043803 (2019), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevA.100.04380389
- Giant superconducting proximity effect on spintronic anisotropy90
Krzysztof P. Wojcik, Maciej Misiorny, Ireneusz Weymann,
Phys. Rev. B 100, 045401 (2019).
DOI: https://doi.org/10.1103/PhysRevB.100.04540191
- Fermi volume evolution and crystal-field excitations in heavy-fermion systems probed by time-domain terahertz spectroscopy92
Shovon Pal, Christoph Wetli, Farzaneh Zamani, Oliver Stockert, Hilbert von Löhneysen, Manfred Fiebig, and Johann Kroha,
Phys. Rev. Lett. 122, 096401 (2019).
DOI: https://doi.org/10.1103/PhysRevLett.122.09640193
- Fluctuation-damping of isolated, oscillating Bose-Einstein condensates94
Tim Lappe, Anna Posazhennikova, Johann Kroha,
Phys. Rev. A 98, 023626 (2018).
DOI: https://link.aps.org/doi/10.1103/PhysRevA.98.02362695
- Time-resolved collapse and revival of the Kondo state near a quantum phase transition96
96Christoph Wetli, S. Pal, Johann Kroha, Kristin Kliemt, Cornelius Krellner, Oliver Stockert, Hilbert von Löhneysen, Manfred Fiebig,
Nature Physics 14, 1103 (2018).
DOI: https://doi.org/10.1038/s41567-018-0228-397
Nature SharedIt link: https://rdcu.be/3KAs98
- Thermalization of isolated Bose-Einstein condensates by dynamical heat bath generation99
Anna Posazhennikova, Mauricio Trujillo-Martinez, Johann Kroha,
Ann. Phys. (Berlin) 530, 1700124 (2018). Journal link100
Feature article and featured in Advanced Science News101
- Interplay of Kondo effect and RKKY interaction102
Johann Kroha,
Lecture notes, Autumn school on Correlated Electrons, FZ Jülich, 25-29 Sept. 2017,
published in "The Physics of Correlated Insulators, Metals, and Superconductors",
E. Pavarini, E. Koch, R. Scalettar, and R. Martin (Eds.),
Series "Modeling and Simulation" Vol. 7, pp 12.1-12.27 (VerlagForschungszentrum Julich, 2017).
- Oscillation and suppression of Kondo temperature by RKKY coupling in two-site Kondo systems103
Ammar Nejati and Johann Kroha,
Proceedings of SCES 2016, Hangzhou, China; J. Phys.: Conf. Series 807, 082004 (2017).
- Kondo destruction in RKKY-coupled Kondo lattice and multi-impurity systems104
Ammar Nejati, Katinka Ballmann, and Johann Kroha,
Phys. Rev. Lett. 118, 117204 (2017).
DOI: https://doi.org/10.1103/PhysRevLett.118.117204105
Supplemental Material is attached to the article on arXiv.
- Inflationary quasiparticle creation and thermalization dynamics in coupled Bose-Einstein condensates106
Anna Posazhennikova, Mauricio Trujillo-Martinez, and Johann Kroha,
Phys. Rev. Lett. 116, 225304 (2016).
DOI: https://doi.org/10.1103/PhysRevLett.116.225304107
Supplemental material108
- Theory of Curie temperature enhancement in electron-doped EuO109
Tobias Stollenwerk and Johann Kroha,
Phys Rev. B 92, 205119 (2015).
- Renormalization group theory for Kondo breakdown in Kondo lattice systems110
Katinka Ballmann, Ammar Nejati and Johann Kroha,
J. Phys.: Conf. Series 592, 012090 (2015);
Proceedings of the conference on Strongly Correlated Electron Systems SCES2014, Grenoble 2014
- Tuning the ultrafast spin dynamics in carrier-density-controlled ferromagnets111
M. Matsubara, A. Schmehl, J. Mannhart, A. Melville, D. G. Schlom, M. Trujillo Martinez, A. Schroer, J. Kroha, and M. Fiebig,
Nature Communications 6, 6724 (2015).
- Temporal nonequilibrium dynamics of a Bose Josephson junction in the presence of incoherent excitations112
M. Trujillo-Martinez, A. Posazhennikova and J. Kroha,
New J. Phys. 17, 013006 (2015).
- Extended Two-Channel Kondo Phase of a Rotational Quantum Defect in a Fermi Gas113
Evaristus Fuh Chuo, Katinka Ballmann, Laszlo Borda and Johann Kroha,
J. Phys: Conf. Series 568, 012007 (2015);
Proceedings of the 27th conference on Low Temperature Physics LT27, Buenos Aires, 2014
- Identifying Kondo orbitals through spatially resolved STS114
Andrey E. Antipov, P. Ribeiro, Johann Kroha and Stefan Kirchner,
Phys. Stat. Sol. B 250, 562-567 (2013).
- Transmission statistics in a nonconservative disordered optical medium115
Zhong Yuan Lai and Oleg Zaitsev,
Phys. Rev. A 88, 023861 (2013).
- Rotational quantum impurities in a metal: Stability of the 2-channel Kondo fixed point in a magnetic field116
Katinka Ballmann and Johann Kroha,
Ann. Physik (Berlin) 524, 245-251 (2012).
- The Pseudoparticle Approach to Strongly Correlated Systems117
R. Fresard, J. Kroha and P. Wölfle,
in "Strongly Correlated Systems: Theoretical Methods",
A. Avella and F. Mancini Eds., Springer Series in Solid-State Sciences118, Volume 171, 65-101 (2012).
- Nonlinear σ model for optical media with linear absorption or gain119
Zhong Yuan Lai and Oleg Zaitsev,
Phys. Rev. A 85, 043838 (2012).
- PRL Viewpoint: Tuning correlations in a 2D electron liquid120
Johann Kroha,
Physics 4, 106 (2011).
- Thickness-dependent magnetic properties of oxygen-deficient EuO121
M. Barbagallo, T. Stollenwerk, J. Kroha, N.-J. Steinke, N.D.M. Hine, J.F.K. Cooper, C.H.W. Barnes, A. Ionescu, P.M.D.S. Monteiro, J.-Y. Kim, K.R.A. Ziebeck, C.J. Kinane, R.M. Dalgliesh, T.R. Charlton, S. Langridge,
Phys. Rev. B 84, 075219 (2011).
- A tunable two-impurity Kondo System in an atomic point contact122
J. Bork, Y.-H. Zhang, L. Diekhöner, L. Borda, P. Simon, J. Kroha, P. Wahl and Klaus Kern,
Nature Physics 7, 901–906 (2011).
DOI: https://doi.org/10.1038/nphys2076123
Supplementary material124
- Efficient construction of maximally localized Wannier functions: locality criterion and initial conditions122
Tobias Stollenwerk, Dmitry V. Chigrin, and Johann Kroha,
J. Opt. Soc. America B 28, 1951 (2011).
- Local photonic modes in periodic or random, dielectric and lasing media125
Tobias Stollenwerk, Regine Frank, Andreas Lubatsch, Oleg Zaitsev, Sergei V. Zhukovsky, Dmitry N. Chigrin, and Johann Kroha,
J. Appl. Phys. B 105 (1), 163-180 (2011).
- Scalar Wave Propagation in Random, Amplifying Media: Influence of Localization Effects on Length and Time Scales and Threshold Behavior126
R. Frank, A. Lubatsch,
Phys. Rev. A 84, 013814 (2011).
- Gas lasers with wave-chaotic resonators127
O. Zaitsev,
J. Phys. B 43, 245402 (2010).
- Diagrammatic semiclassical laser theory128
O. Zaitsev and L. Deych,
Phys. Rev. A 81, 023822 (2010).
- High-temperature signatures of quantum criticality in heavy fermion systems129
J. Kroha, M. Klein, A. Nuber, F. Reinert, O. Stockert, H. v. Löhneysen,
invited paper, International Conference on Magnetism ICM09, Karlsruhe, July 2009;
J. Phys. Cond. Mat. 22, 164203 (2010); arXiv:0907.1340
- Optically Driven Mott-HubbardSystems out of Thermodynamic Equilibrium130
A. Lubatsch and J. Kroha,
Annalen der Physik 18, 863-867 (2010).
- Theoretical Approach to Random Lasing in Thin Systems on Reflecting Substrates131
R. Frank, A. Lubatsch, J. Kroha, K. Busch,
AIP Conf. Proc. 1176, 110, (2009).
- Light Propagation in Anisotropic Disordered Media132
A. Lubatsch, R. Frank,
AIP Conf. Proc. 1176, 124, (2009).
- Nonequilibrium Josephson oscillations in Bose-Einstein condensate without dissipation133
Mauricio Trujillo Martinez, Anna Posazhennikova and Johann Kroha,
Phys. Rev. Lett. 103, 105302 (2009).
- Two atomic quantum dots interacting via coupling to BECs134
Anna Posazhennikova and Wolfgang Belzig,
arXiv:0902.3406 (2009).
- Kondo "underscreening" cloud: spin-spin correlations around a partially screened magnetic impurity135
L. Borda, M. Garst, and J. Kroha,
Phys. Rev. B 79, R100408 (2009).
- Light Transport and Localization in Diffusive Random Lasers136
R. Frank, A. Lubatsch, and J. Kroha,
J. Opt. A: Pure Appl. Opt. 11, 114012 (2009).
- Echo of the Quantum Phase Transition of CeCu6-xAux in XPS: Breakdown of Kondo Screening137
M. Klein, J. Kroha, H. v. Löhneysen, O. Stockert, and F. Reinert,
Phys. Rev. B, 79, 075111 (2009).
- Theory of Cherenkov radiation in periodic dielectric media: Emission spectrum138
Ch. Kremers, D. N. Chigrin, and J. Kroha,
Phys. Rev. A 79, 013829 (2009).
- Bistability and Mode Interaction in Microlasers139
Sergei V. Zhukovsky, Dmitry N. Chigrin, and Johann Kroha,
Phys. Rev. A 79, 033803 (2009).
- Light transport and Correlation Length in a Random Laser140
R. Frank, A. Lubatsch and J. Kroha,
Ann. Physik (Berlin) 18, 882 (2009).
- Light Transport in Disordered Systems with Absorption or Gain141
A. Lubatsch, R. Frank, and J. Kroha,
submitted to J. Stat. Mech. (2008).
- Signature of quantum criticality in photoemission spectroscopy at elevated temperature142
M. Klein, A. Nuber, F. Reinert, J. Kroha, O. Stockert, and H. v. Löhneysen,
Phys. Rev Lett. 101, 266404 (2008).
- Self-consistent study of Anderson localization in the Anderson-Hubbard model in two and three dimensions143
P. Henseler, J. Kroha, and B. Shapiro,
Phys. Rev. B 78, 235116 (2008).
- Density correlations in cold atomic gases: Atomic speckles in the presence of disorder144
Peter Henseler and Boris Shapiro,
Phys. Rev. A 77, 033624 (2008).
- Static screening and delocalization effects in the Hubbard-Anderson model145
Peter Henseler, Johann Kroha, and Boris Shapiro,
Phys. Rev. B 77, 075101 (2008).
- Simultaneous ferromagnetic metal-semiconductor transition in electron-doped EuO146
Michael Arnold and Johann Kroha,
Phys. Rev. Lett. 100, 046404 (2008).
- Coherent particle oscillations between two Bose-Einstein condensates mediated by a single localized impurity atom147
U. R. Fischer, Ch. Iniotakis, A. Posazhennikova,
Phys. Rev. A 77, 031602(R) (2008).
- Bistability and Ultrafast Mode Switching in Microlasers148
Sergei V. Zhukovsky, Dmitry N. Chigrin, A.V. Lavrinenko, and Johann Kroha,
IEEE Conference on Lasers and Electro-Optics (CLEO) Vols 1-9, pp. 2329-2330 (2008).
- Stable two-channel Kondo fixed point of an SU(3) quantum defect in a metal: renormalization group analysis and conductance spikes149
Michael Arnold, Tobias Langenbruch, and Johann Kroha,
Phys. Rev. Lett. 99, 186601 (2007).
- Strong mode coupling, bistable lasing, and mode switching dynamics in twin coupled microcavities150
S. V. Zhukovsky, D. V. Chigrin, A. V. Lavrinenko, and J. Kroha (2007).
- Coupled nanopillar waveguides: optical properties and applications151
Dmitry N. Chigrin, Sergei V. Zhukovsky, Andrei V. Lavrinenko, and Johann Kroha,
Phys. Stat. Sol. A 204 (11) 3647 (2007).
- Universality in Voltage-driven Nonequilibrium Phase Transitions152
Johann Kroha, Michael Arnold, and Beate Griepernau,
J. Low Temp. Phys. 147 (3-4), 505 (2007);
dedicated to Prof. Hilbert von Löhneysen on the occasion of his 60th birthday.
- High Resolution Photoemission Study on Low-TK Ce Systems: Kondo Resonance, Crystal Field Structures, and their Temperature Dependence153
D. Ehm, S. Schmidt, S. Hüfner, F. Reinert, J. Kroha, P. Wölfle, O. Stockert, C. Geibel and H. von Löhneysen,
Phys. Rev. B 76, 045117 (2007).
- Switchable lasing in multimode microcavities154
Sergei V. Zhukovsky, Dmitry N. Chigrin, Andrei Lavrinenko, Johann Kroha,
Phys. Rev. Lett. 99, 073902 (2007).
- Strong vs. Weak Coupling Duality and Coupling Dependence of the Kondo Temperature in the Two-Channel Kondo Model155
Christian Kolf and Johann Kroha,
Phys. Rev. B 75, 045129 (2007).
- Simultaneous ferromagnetic and and semiconductor-metal transition in EuO156
Michael Arnold and Johann Kroha,
Physica C 460, 1137 (2007).
- Polariton bandstructure of disordered metallic photonic crystal slabs157
D. Nau, A. Schönhardt, D. N. Chigrin, H. Kroha, A. Christ und H. Giessen,
Physica Status Solidi B 244 (4), 1262 (2007).
- Selective lasing in multimode periodic and non-periodic nanopillar waveguides158
Sergei V. Zhukovsky, Dmitry N. Chigrin, Andrei Lavrinenko, Johann Kroha,
Physica Status Solidi B 244 (4), 1211 (2007).
- Numerical modelling of lasing in microstructures
Sergei V. Zhukovsky and Dmitry N. Chigrin,
Physica Status Solidi B 244 (10), 3515-3527 (2007).
- Spin Correlations and Finite-Size Effects in the One-dimensional Kondo Box159
Thomas Hand, Johann Kroha, Hartmut Monien,
Phys. Rev. Lett. 97, 136604 (2006); cond-mat/0602352
- Low-loss resonant modes in deterministically aperiodic nanopillar waveguides160
Sergei V. Zhukovsky, Dmitry N. Chigrin, Johann Kroha
J. Opt. Soc. Am. B 23, 2265 (2006); cond-mat/0601296
- Theory of strong localization effects of light in disordered loss or gain media161
Regine Frank, Andreas Lubatsch, and Johann Kroha
Phys. Rev. B 73, 245107 (2006); cond-mat/0511331
- Nonequilibrium electron transport through quantum dots in the Kondo regime162
P. Wölfle, J. Paaske, A. Rosch, and J. Kroha
AIP Conference Proceedings 850, 1378 (2006); (LT24, Orlando, 2005).
- Comment on "Fano Resonance for Anderson Impurity Systems"163
Ch. Kolf, J. Kroha, M. Ternes, and W.-D. Schneider
Phys. Rev. Lett. 96, 019701 (2006); cond-mat/0503669
- Influence of correlation and temperature on the electronic structure of bulk and thin film GdN164
Satadeep Bhattacharjee and S. Mathi Jaya,
Eur. Phys. J. B 49, 305 (2006).
- pi-junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads165
Gabriel Sellier, Thilo Kopp, Johann Kroha, and Yuri S. Barash,
Phys. Rev. B 72, 174502 (2005); cond-mat/0504649
Selected for Virtual Journal of Applications of Superconductivity, VJSuper166, issue Nov. 15 (2005)167.
- Spectral self-similarity in fractal one-dimensional photonic structures168
S. V. Zhukovsky and A. V. Lavrinenko
Photonics and Nanostructures, 3, 129 (2005).
- Numerical characterization of nanopillar photonic crystal waveguides and directional couplers
D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres
Opt. Quantum Electron. 37 (2005), pp. 331-341.
- Theory of light diffusion in disordered media with linear absorption or gain169
A. Lubatsch, J. Kroha, and K. Busch,
Phys. Rev. B 71, 184201 (2005); cond-mat/0412083
- Photonic quasicrystals for applications in WDM systems
J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres,
Phys. Stat. Sol. (a), 202 (2005) No 6, pp. 997-1001.
- Resonant add-drop filter based on photonic quasicrystal170
J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres
Opt. Express, 13 (2005) No 3, pp. 826-835 (Cover story).
- Conserving Diagrammatic Approximations for Quantum Impurity Models: NCA and CTMA171
J. Kroha and P. Wölfle,
Invited article, in a Special Topics Section of JPSJ, "Kondo Effect -- 40 Years after the Discovery", J. Phys. Soc. Jpn. 74 (1), 16 (2005); cond-mat/0410273
- The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group172
A. Rosch, J. Paaske, J. Kroha, and P. Wölfle
Invited article, in a Special Topics Section of JPSJ, "Kondo Effect -- 40 Years after the Discovery", J. Phys. Soc. Jpn. 74 (1), 118 (2005); cond-mat/0408506
- Fermi Liquid Properties of the Anderson Impurity Model within a Conserving Pseudoparticle Approach173
S. Kirchner, J. Kroha, and P. Wölfle,
in Proceedings of the International Conference on "Strongly Correlated Electron Systems SCES04", Karlsruhe, 2004; Physica B 359-261C, 756 (2005).
- Non-equilibrium Transport Through Quantum Dots in the Kondo Regime174
J. Paaske, A. Rosch, P. Wölfle, and J. Kroha,
Contributed paper to the International Conference on Low-Temperature Physics LT24, Orlando, Florida (2005).
- Radiation pattern of a classical dipole in a photonic crystal: photon focusing175
D. N. Chigrin,
Phys. Rev. E 70, 056611 (2004).
- Dynamical Properties of the Anderson Impurity Model within a Diagrammatic Pseudoparticle Approach176
S. Kirchner, J. Kroha, and P Wölfle,
Phys. Rev. B 70, 165102 (2004); cond-mat/0404311
- Nonequilibrium Transport through a Kondo Dot: Decoherence Effects177
J. Paaske, A. Rosch, J. Kroha, and P Wölfle,
Phys. Rev. B 70, 155301 (2004); cond-mat/0401180
-
Conductance Quasi-quantization of quantum point contacts178
S. Kirchner, J. Kroha, and E. Scheer,
Lecture Notes in Physics 630, 303 (2004).
- Pseudogaps in the t-J model: Extended DMFT study179
K. Haule, A. Rosch, J. Kroha and P Wölfle,
Phys. Rev. B 68, 155119 (2003).
- Non-equilibrium Transport and Relaxation in Diffusive Nanowires with Kondo Impurities180
J. Kroha, A. Rosch, J. Paaske, and P. Wölfle,
Adv. Solid State Phys. (B. Kramer Ed.) 43, 223 (Springer, 2003).
- Non-Equilibrium Transport through a Kondo-Dot in a Magnetic Field: Perturbation Theory and Poor Man's Scaling181
A. Rosch, J. Paaske, J. Kroha and P Wölfle,
Phys. Rev. Lett. 90, 076804 (2003).
- Conductance Quasi-quantization of Quantum Point Contacts: Why Tight-binding Models are Insufficient
S. Kirchner, J. Kroha, P. Wölfle, and E. Scheer
in "Anderson Localization and its Ramifications: Disorder Phase Coherence and Electron Correlations",
T. Brandes and S. Kettemann Eds., 303 (Springer 2003).
- Structure and Transport in Multi-orbital Kondo Systems182
J. Kroha, S. Kirchner, G. Sellier, P. Wölfle, D. Ehm, F. Reinert, S. Hüfner, and C. Geibel,
Invited paper, XXIII. International Conference on Low Temperature Physics LT23, Hiroshima, 2002.
Physica E 18, 69 (2003).
- Fermi and Non-Fermi liquid behavior of quantum impurity models: Diagrammatic Pseudoparticle Approach183
J. Kroha and P. Wölfle
Invited Article, Proceedings of the International Conference on ``Mathematical Methods in Physics'', Montreal 2000;
in ``Theoretical Methods for Strongly Correlated Electrons'',
D. Senechal, A.-M. Tremblay, and C. Bourbonnais Eds.,
CRM Series in Mathematical Physics (Springer, New York, 2003).
- Interplay between the Geometrical and the Electronic Structure in Quasicrystals184
J. Kroha, D. Walther, and R. von Baltz,
in "Quasicrystals - Structure and Physical Properties",
H.-R. Trebin Hrsg., pp 236 (Wiley, 2003).
- High Resolution PES Investigations on the Prototype Heavy Fermion Compound CeCu6185
D. Ehm, F. Reinert, J. Kroha, O. Stockert, and S. Hüfner,
Acta Physica Polonica (Sp. Iss. SI) 34, 951 (2003).
- Selfconsistent Auxiliary Particle Theory for Strongly Correlated Fermion Systems
S. Kirchner, J. Kroha, and P. Wölfle
Invited paper, in ``High Performance Computing in Science and Engineering 2002",
E. Krause and W. Jäger Eds. (Springer, 2003), ISBN 3-54043860-2.
- Nonequilibrium Electron Transport through Nanostructures: Correlation Effects186
P. Wölfle, A. Rosch, J. Paaske, and J. Kroha.
- Pseudogaps in an Incoherent Metal187
K. Haule, A. Rosch, J. Kroha, and P. Wölfle,
Phys. Rev. Lett., 89 236402 (2002).
- Non-equilibrium Transport through a Kondo-Dot in a Magnetic Field188
P. Wölfle, A. Rosch, J. Paaske, and J. Kroha,
Adv. Solid State Phys. 42, 175, B. Kramer Ed. (Springer, 2002).
- Self-consistent Conserving Theory for Quantum Impurity Systems: Renormalization Group Analysis189
Stefan Kirchner and Johann Kroha,
J. Low Temp. Phys. 126, 1233 (2002).
- Quantitative Line Shape Analysis of the Kondo Resonance of Cerium Compounds190
D. Ehm, F. Reinert, S. Schmidt, G. Nicolay, and S. Hüfner, J. Kroha, O. Trovarelli and C. Geibel,
in Proceedings of the SCES 2001 conference, Physica B 312, 663 (2002).
- Theory of the non-equilibrium quasiparticle distribution induced by Kondo defects191
J. Kroha and A. Zawadowski,
Phys. Rev. Lett. 88, 176803 (2002).
- Anderson impurity model at finite Coulomb interaction U: The generalized Non-crossing Approximation192
K. Haule, S. Kirchner, J. Kroha, and P. Wölfle,
Phys. Rev. B, 64, 155111 (2001).
- The Kondo effect in quantum dots at high voltage: Universality and scaling193
A. Rosch, J. Kroha, and P. Wölfle,
Phys. Rev. Lett., 87, 156802 (2001).
- Comment on ``Non--equilibrium Electron Distribution in Presence of Kondo Impurities'' (cond-mat/0102150.v2)194
J. Kroha and A. Zawadowski, cond-mat/0105026.
- Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2195
F. Reinert, D. Ehm, S. Schmidt, G. Nicolay, and S. Hüfner, J. Kroha, O. Trovarelli and C. Geibel,
Phys. Rev. Lett., 87, 106401 (2001).
- Non-equilibrium electronic transport and interactions in short metallic nanobridges196
H. B. Weber, R. Häussler, H. v. Löhneysen and J. Kroha,
Phys. Rev. B 63, 165426 (2001).
- Kondo effect in non-equilibrium197
Theory of energy relaxation induced by dynamical defects in diffusive nanowires
J. Kroha,
invited paper, in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 133 (Kluwer Academic Publishers, 2001).
- Theory of STM spectroscopy of magnetic ions on metal surfaces198
O. Ujsaghy, J. Kroha, L. Szunyogh and A. Zawadowski,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 245 (Kluwer Academic Publishers, 2001).
- Pair breaking in s-wave superconductors by two-channel Kondo impurities199
G. Sellier, S. Kirchner and J. Kroha,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 241 (Kluwer Academic Publishers, 2001).
- Generalized conductance sum rule in atomic break junctions200
S. Kirchner, J. Kroha and E. Scheer,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 215 (Kluwer Academic Publishers, 2001).
- Zero-bias transport anomaly in metallic nanobridges: Magnetic field dependence and universal conductance fluctuations201
H. B. Weber, R. Häussler, H. v. Löhneysen and J. Kroha,
Invited paper, in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 53 (Kluwer Academic Publishers, 2001).
- Diagrammatic theory of the Anderson impurity model with finite Coulomb interaction202
K. Haule, S. Kirchner, J. Kroha and P. Wölfle,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 211 (Kluwer Academic Publishers, 2001).
- Diagrammatic theory of Anderson impurity and lattice models: Fermi and non-Fermi liquid behavior203
Johann Kroha and Peter Wölfle,
Invited paper, in Proceedings of the NATO Advanced Research Workshop ``Open problems in strongly correlated electron systems'', Bled, Slowenia, April 26--30, 2000, J. Bonca, P. Prelovsek, A. Ramsak und S. Sarkar eds., NATO Science Series II, Vol. 15, 101 (Kluwer Academic Publishers, Dordrecht, 2001).
- Diagrammatic theory of the Anderson impurity model with finite Coulomb interaction202
K. Haule, S. Kirchner, H. Kroha and P. Wölfle,
in Proceedings of the NATO Advanced Research Workshop ``Open problems in strongly correlated electron systems'', Bled, Slowenia, April 26--30, 2000, J. Bonca, P. Prelovsek, A. Ramsak und S. Sarkar eds., NATO Science Series II, Vol. 15, 413 (Kluwer Academic Publishers, Dordrecht, 2001).
- Electronic stabilization of amorphous and quasicrystalline metals: Importance of quantum correlations204
Hans Kroha,
Mat. Sci. Eng. A, 294-296, 500 (2000).
- Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity205
O. Újsághy, J. Kroha, L. Szunyogh and A. Zawadowski,
Phys. Rev. Lett. 85, 2557 (2000).
- Energy and phase relaxation in non-equilibrium diffusive nano-wires with two-level systems206
J. Kroha,
Invited paper, Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Regensburg, 2000.
Festkörperprobleme/Adv. Solid State Phys. 40, 267 (2000).
- Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation207
T. Schauerte, J. Kroha and P. Wölfle,
Phys. Rev. B 62, 4394 (2000).
- Fermi and non-Fermi liquid behavior in quantum impurity systems: Conserving slave boson theory208
Johann Kroha and Peter Wölfle,
Invited paper, Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Münster, 1999.
Festkörperprobleme/Adv. Solid State Phys. 39, 271 (1999).
- Electron-electron interaction effects in a diffusive Cu nanobridge209
H. B. Weber, R. Häussler, H. v. Löhneysen, P. Pfundstein and J. Kroha,
Jahrbuch 1998, Physikalisches Institut, Universität Karlsruhe (1999).
- Correlation-enhanced Friedel oscillations in amorphous and quasicrystalline alloys210
J. Kroha,
in Aperiodic'97, Proceedings of the international conference on aperiodic crystals,
M. de Boisieu, J.-L. Verger-Gaugry and R. Currat, eds., 499 (World Scientific, Singapore, 1999).
- The Kondo box: A magnetic impurity in an ultrasmall metallic grain211
Wolfgang B. Thimm, Johann Kroha and Jan v. Delft,
Phys. Rev. Lett. 82, 2143 (1999).
- Correlation-enhanced Friedel oscillations in amorphous alloys and quasicrystals212
Johann Kroha,
J. Noncryst. Solids, 250-252, 865 (1999).
- Fermi and non-Fermi liquid behavior in quantum impurity systems213
Johann Kroha and Peter Wölfle,
in The Cracow School of Theoretical Physics, XXXVIII. Course: New Quantum Phases, Elementary Excitations and Renormalization in High Energy and Condensed Matter Physics, Acta Phys. Pol. B 29 (12), 3781 (1998)214.
- Fermi and non-Fermi liquid behavior of local-moment systems within a conserving slave boson theory215
Johann Kroha and Peter Wölfle,
in "Magnetism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds",
M. Donath, P. A. Dowben and W. Nolting, eds., pp. 335, World Scientific (Singapore, 1998).
- Non-equilibrium dynamics of the Anderson impurity model216
M. H. Hettler, J. Kroha, and S. Hershfield,
Phys. Rev. B 58, 5649 (1998).
- Antiferromagnetic interlayer exchange coupling across an amorphous metallic spacer layer217
D. E. Bürgler, D. M. Schaller, C. M. Schmidt, F. Meisinger, J. Kroha, J. McCord, A. Hubert, and H.-J. Güntherodt,
Phys. Rev. Lett. 80, 4983 (1998).
- Unified description of Fermi- and non-Fermi liquid behavior in a conserving slave boson approximation for strongly correlated impurity models218
J. Kroha, P. Wölfle, and T. A. Costi,
Phys. Rev. Lett. 79, 261 (1997).
- Disorder-enhanced electron correlations near the crystalline-amorphous transition219
J. Kroha, A. Huck, and T. Kopp,
Czech. J. Phys. 46, (S4) 2275 (1996).
- Conserving slave boson approximations for the Anderson model beyond NCA220
J. Kroha, T. A. Costi, P. Wölfle, P. Hirschfeld, and K. A. Muttalib,
Czech. J. Phys. 46, (S4), 1897 (1996).
- Spectral properties of the Anderson impurity model: Comparison of numerical-renormalization-group and noncrossing-approximation results221
T. A. Costi, J. Kroha, and P. Wölfle,
Phys. Rev. B 53, 1850 (1996).
- Coulomb interaction and disorder at q = 2k_F: A novel instability of the Fermi sea and implications for amorphous alloys222
J. Kroha, A. Huck, and T. Kopp,
Phys. Rev. Lett. 75, 4278 (1995).
- Infrared divergences in the Kondo problem223
T. A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle,
Physica C235-240, 2287 (1994).
- Nonlinear conductance for the two channel Anderson model224
M. H. Hettler, J. Kroha, and S. Hershfield,
Phys. Rev. Lett. 73, 1967 (1994).
- Numerical renormalization group study of pseudo-fermion and slave-boson spectral functions in the single impurity Anderson model225
T. A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle,
Phys. Rev. Lett. 73, 1275 (1994).
- Localization of classical waves in a random medium: A self-consistent theory226
J. Kroha, C. M. Soukoulis, and P. Wölfle,
Phys. Rev. B 47, 11093 (1993).
- Diffusion of classical waves in random media
J. Kroha, C. M. Soukoulis, and P. Wölfle,
in "Photonic band gaps and localization", C. M. Soukoulis, ed., NATO ASI Series B 308, 63 (Plenum Press, 1993).
- Conserving slave boson approach to strongly correlated Fermi systems: Single impurity Anderson model227
J. Kroha, P. Hirschfeld, K. A. Muttalib, and P. Wölfle,
Solid State Comm. 83 (12), 1003 (1992).
- X-ray photoemission spectra of impure simple metals228
Y. Chen and J. Kroha,
Phys. Rev. B 46, 1332 (1992).
- Diagrammatic self-consistent theory of Anderson localization for the tight-binding model229
J. Kroha,
in "Anderson localization and mesoscopic Fluctuations",
B. Kramer, G. Schön, eds.,
Physica A 167, 231 (1990).
- Self-consistent theory of Anderson localization for the tight-binding model with site-diagonal disorder230
J. Kroha, T. Kopp, and P. Wölfle,
Phys. Rev. B 41, R888 (1990).
Links
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2023
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2024
- https://www.pi.uni-bonn.de/kroha/en/publications/publications
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2012
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2013
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2014
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2016
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2015
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2017
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2018
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2019
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2020
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2022
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2021
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2001
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2002
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2003
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2004
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2005
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2006
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2007
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2008
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2009
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2010
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2011
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1990
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1991
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1992
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1993
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1994
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1995
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1996
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1997
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1998
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1999
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2000
- https://arxiv.org/abs/2503.16695
- https://arxiv.org/abs/2412.16012
- https://arxiv.org/abs/2408.07345
- https://doi.org/10.1103/PhysRevB.111.035117
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#top
- https://arxiv.org/abs/2312.06931
- https://doi.org/10.1103/PhysRevB.109.235103
- https://arxiv.org/abs/2308.00968
- https://doi.org/10.1103/PhysRevResearch.6.013220
- https://arxiv.org/abs/2311.13301
- https://doi.org/10.1002/andp.202300505.
- https://arxiv.org/abs/2312.13366
- https://doi.org/10.1103/PhysRevResearch.6.L042008
- https://onlinelibrary.wiley.com/doi/full/10.1002/piuz.202370606
- https://arxiv.org/abs/2208.05932
- https://www.nature.com/articles/s41567-023-02156-7
- https://arxiv.org/abs/2302.13313
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.L201104
- https://arxiv.org/abs/2106.07519
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.L121111
- https://arxiv.org/abs/2209.11556
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.125146
- https://arxiv.org/abs/2204.12422
- https://doi.org/10.1103/PhysRevA.106.043321
- https://arxiv.org/abs/2203.05503
- https://doi.org/10.1103/PhysRevResearch.4.033184
- https://arxiv.org/abs/2203.14625
- https://doi.org/10.1103/PhysRevA.106.033316
- https://arxiv.org/abs/2110.04793
- https://doi.org/10.21468/SciPostPhysCore.5.2.030
- https://arxiv.org/abs/2106.14860
- https://doi.org/10.1002/andp.202100581
- https://www.kroha.uni-bonn.de/publications/phasen-eines-bose-einstein-kondensats-aus-licht
- https://doi.org/10.1002/piuz.202170404
- https://arxiv.org/abs/2010.15829
- https://doi.org/10.1126/science.abe9869
- https://arxiv.org/abs/2010.16150
- https://doi.org/10.1103/PhysRevResearch.3.013260
- https://arxiv.org/abs/2007.06331
- https://doi.org/10.1103/PhysRevA.103.033311%20
- https://arxiv.org/abs/1910.13648
- https://doi.org/10.1038/s41467-020-18407-7
- https://arxiv.org/abs/2004.07719v2
- https://doi.org/10.1103/PhysRevResearch.2.033296
- https://arxiv.org/abs/2003.11140
- https://doi.org/10.1103/PhysRevB.102.045144
- https://arxiv.org/abs/1911.03770
- https://doi.org/10.1038/s41467-020-17510-z
- https://rdcu.be/b5RNz
- https://arxiv.org/abs/2001.11280
- https://doi.org/10.1103/PhysRevB.101.235404
- https://arxiv.org/abs/1908.00883
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.043803
- https://link.aps.org/doi/10.1103/PhysRevB.100.045401
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045401
- https://arxiv.org/abs/1810.07412
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.096401
- https://arxiv.org/abs/1806.00376
- https://link.aps.org/doi/10.1103/PhysRevA.98.023626
- https://arxiv.org/abs/1703.04443
- https://doi.org/10.1038/s41567-018-0228-3
- https://rdcu.be/3KAs
- https://arxiv.org/abs/1705.01754
- http://onlinelibrary.wiley.com/wol1/doi/10.1002/andp.201700124/full
- http://www.advancedsciencenews.com/quantum-system-thermalization/
- https://arxiv.org/abs/1710.00192
- https://arxiv.org/abs/1612.06620
- https://arxiv.org/abs/1612.03338
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.117204
- http://arxiv.org/abs/1603.04898
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.225304
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/bec_thermalization_supplmat.pdf
- http://arxiv.org/abs/1509.01422
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ballmann_2015_j-_phys-__conf-_ser-_592_012090.pdf
- http://arxiv.org/abs/1304.2509
- http://iopscience.iop.org/1367-2630/17/1/013006/article
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2ck-su3_lt27.pdf
- http://onlinelibrary.wiley.com/doi/10.1002/pssb.201200936/abstract
- http://pra.aps.org/abstract/PRA/v88/i2/e023861
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2ck_adp2012.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/sb_review_2011.pdf
- https://springerlink3.metapress.com/content/0171-1873/
- http://pra.aps.org/abstract/PRA/v85/i4/e043838
- http://physics.aps.org/articles/v4/106
- http://arxiv.org/abs/1104.4363
- http://arxiv.org/abs/1108.0869
- https://doi.org/10.1038/nphys2076
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/supplementary_v2.pdf
- https://www.kroha.uni-bonn.de/publications/papers/for557_report_final
- http://arxiv.org/abs/1106.3020
- http://arxiv.org/abs/1010.5985
- http://dx.doi.org/10.1103/PhysRevA%2E81%2E023822
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/kroha_jpcm_22_16_164203.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/annalenphysik_18_863_2010.pdf
- http://link.aip.org/link/?APCPCS/1176/110/1
- http://link.aip.org/link/?APCPCS/1176/124/1
- http://arxiv.org/abs/0903.5459
- http://arxiv.org/abs/0902.3406
- http://arxiv.org/abs/0811.1032
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/joa_11_114012_2009.pdf
- http://arxiv.org/abs/0811.0749
- http://arxiv.org/abs/0808.3519
- http://arxiv.org/abs/0804.3758
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/annalenphysik_18_882_2010.pdf
- http://www.th.physik.uni-bonn.de/kroha/...
- http://arxiv.org/abs/0806.3296
- http://link.aps.org/doi/10.1103/PhysRevB.78.235116
- http://link.aps.org/doi/10.1103/PhysRevA.77.033624
- http://link.aps.org/doi/10.1103/PhysRevB.77.075101
- http://arxiv.org/abs/0708.0416
- http://arxiv.org/abs/0709.1542
- https://doi.org/10.1109/CLEO.2008.4552104
- http://www.arxiv.org/abs/0707.4152
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/spie-icono.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/cnpw-review.pdf
- http://www.lanl.gov/abs/cond-mat/0610280
- http://www.arxiv.org/abs/cond-mat/0702360
- http://www.arxiv.org/abs/cond-mat/0701619
- http://xxx.arxiv.org/abs/cond-mat/0610631
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/euo_physicac.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/disorder-physstatsol-b_070128.pdf
- http://xxx.arxiv.org/abs/cond-mat/0611351
- http://www.lanl.gov/abs/cond-mat/0602352
- http://www.lanl.gov/abs/cond-mat/0601296
- http://www.lanl.gov/abs/cond-mat/0511331
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt24_proc.pdf
- http://www.lanl.gov/abs/cond-mat/0503669
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/gdn.pdf
- http://www.lanl.gov/abs/cond-mat/0504649
- http://www.vjsuper.org/
- http://scitation.aip.org/dbt/dbt.jsp?KEY=VIRT03&Volume=CURVOL&Issue=CURISS
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/photns_zhukovsky05.pdf
- http://www.lanl.gov/abs/cond-mat/0412083
- http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-826
- http://www.lanl.gov/abs/cond-mat/0410273
- http://www.lanl.gov/abs/cond-mat/0408506
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/sces04.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt24.pdf
- http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000070000005056611000001&idtype=cvips&gifs=yes
- http://www.lanl.gov/abs/cond-mat/0404311
- http://xxx.lanl.gov/abs/cond-mat/0401180
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lectnotesphys630_303_2004.pdf
- http://xxx.lanl.gov/abs/cond-mat/0304096
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/dpg03.ps
- http://xxx.lanl.gov/abs/cond-mat/0202404
- http://arxiv.org/abs/cond-mat/0702578
- http://xxx.lanl.gov/abs/cond-mat/0105491
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/spqc_report.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/cecu6proc.ps
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/hvar.ps
- http://xxx.lanl.gov/abs/cond-mat/0205347
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/kondo_rg.ps
- http://xxx.lanl.gov/abs/cond-mat/0202351
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ceru2si2proc.ps
- http://xxx.lanl.gov/abs/cond-mat/0104151
- http://xxx.lanl.gov/abs/cond-mat/0105490
- http://xxx.lanl.gov/abs/cond-mat/0105032
- http://xxx.lanl.gov/abs/cond-mat/0105026
- http://xxx.lanl.gov/abs/cond-mat/0104037
- http://xxx.lanl.gov/abs/cond-mat/0007077
- http://xxx.lanl.gov/abs/cond-mat/0102185
- http://xxx.lanl.gov/abs/cond-mat/0009351
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2cksc.ps
- http://xxx.lanl.gov/abs/cond-mat/0010103
- http://xxx.lanl.gov/abs/cond-mat/0007333
- http://xxx.lanl.gov/abs/cond-mat/0007274
- http://xxx.lanl.gov/abs/cond-mat/0005483
- http://xxx.lanl.gov/abs/cond-mat/9911263
- http://xxx.lanl.gov/abs/cond-mat/0005166
- http://xxx.lanl.gov/abs/cond-mat/0102188
- http://xxx.lanl.gov/abs/cond-mat/9912007
- http://xxx.lanl.gov/abs/cond-mat/0007103
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/jahrbuch98.ps
- http://xxx.lanl.gov/abs/cond-mat/9707295
- http://xxx.lanl.gov/abs/cond-mat/9809416
- http://xxx.lanl.gov/abs/cond-mat/9810068
- https://arxiv.org/abs/cond-mat/9804061
- https://www.actaphys.uj.edu.pl/R/29/12/3781
- http://xxx.lanl.gov/abs/cond-mat/9804061
- http://xxx.lanl.gov/abs/cond-mat/9707209
- http://xxx.lanl.gov/abs/cond-mat/9802148
- http://xxx.lanl.gov/abs/cond-mat/9611096
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt21a.ps
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt21b.ps
- http://xxx.lanl.gov/abs/cond-mat/9507008
- http://arxiv.org/abs/cond-mat/9411122
- http://www.th.physik.uni-bonn.de/th/Groups/Kroha/PAPERS/IR_Kondo.ps.gz
- http://arxiv.org/abs/cond-mat/9405059
- http://xxx.lanl.gov/abs/cond-mat/9404097
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb47_11093_93.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ssc_1992.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb46_1332_92.pdf
- https://arxiv.org/abs/1501.05465
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb41_r888_90.ps