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1 Introduction

In contrast to theoretical models of closed quantum systems, experimental realisations always un-
derlie dissipative effects. Actually, many experiments are designed to observe the behaviour of
systems governed by exactly these effects. For the theoretical description one works with open
quantum systems having a non-unitary time-evolution specified by so called master equations.
Trying to characterise and understand open quantum systems leads, in fact, to many new inter-
esting quantities and effects. One example is the quantum Zeno effect, experimentally observed
e.g. by Barontini (2013), where a localised dissipation of particles from a Bose-Einstein condensate
was realised by using an electron beam.

Our open quantum system of interest, and thus, the main topic of this thesis are dissipatively
driven waveguides. In this case, the dissipation is given by the loss of photons during the time
where the light evolves through the waveguides. For our application, we focus on the Lindblad
master equation, which we introduce at the beginning after a short revision about quantum systems
in general. Additionally, we describe the system with a non-hermitian Hamiltonian and compare
both results.

Starting with a homogeneous system where the hopping amplitude and the dissipation strength are
the same for each waveguide, we obtain with both formalisms a solution for arbitrary numbers of
waveguides and particles for a time-independent as well as a time-dependent dissipation strength.
After that, we focus on a simpler model containing only two waveguides and one particle. The
significant feature here is that only one of these two waveguides has the property of losing photons.
This leads to the appearance of the quantum Zeno effect. Moreover, we obtain in the numerical
solutions from the Lindblad equation for a time periodic dissipation strength resonances at specific
frequencies. These occur also in the solution with the non-hermitian Hamiltonian, which we get
by using Floquet theory.
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2 Theory of quantum systems

As a starting point for our description of quantum systems, we give a short introduction to the
density matrix formalism and comment on the distinction between closed and open systems. This
leads to the Lindblad master equation as an effective equation for open systems. For a general
introduction to quantum mechanics, we refer to Shankar (2012). Regarding the description of open
quantum systems, we mainly follow Breuer and Petruccione (2002).

2.1 Closed quantum systems

The Schrödinger equation describes a closed quantum mechanical system by

i~
d
dt |Ψ(t)〉 = H(t) |Ψ(t)〉

with the state vector |Ψ(t)〉 in a Hilbert Space H and the Hamiltonian H. Due to the linearity of
this equation, a general solution is given in terms of the unitary time-evolution operator U(t, t0)
as

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 .

For a time-dependent Hamiltonian, the time-evolution operator can be written as a time ordered
exponential

U(t, t0) = T exp
{
−i
∫ t

t0

dt′H(t′)
}
,

which in the time-independent case reduces to

U(t, t0) = e−iH(t−t0)/~.

Another possible way to describe a quantum mechanical system includes the density operator ρ.
This formulation additionally allows to consider mixed states. A pure state can be written as a
linear combination of basis states |Φi〉 of the Hilbert space

|Ψ(t)〉 =
∑
i

ci |Φi(t)〉

with complex coefficients ci. In some basis, a mixed state can now be expressed by the density
operator ρ given by

ρ(t) =
∑
i

pi |Ψi(t)〉 〈Ψi(t)|

where the coefficients pi corresponds to the probability of being in the normalized state |Ψi(t)〉.
The density operator ρ has to fulfil several properties in order to describe a physical state:

- The density operator has to be hermitian: ρ† = ρ

- The trace of the density operator has to be equal to one: Tr(ρ) = 1

- The density operator has real1 and positive eigenvalues

The equation of motion for the density operator follows from the Schrödinger equation and is called
Liouville- von Neumann equation:

i~
d
dtρ(t) = [H(t), ρ(t)]

1Note that this is already implied by the hermiticity of ρ.

3



2 Theory of quantum systems

In the density matrix formalism, the expectation value of an operator A can be calculated by

〈A〉(t) = Tr(ρ(t)A). (2.1)

2.2 Open quantum systems

An open quantum mechanical system describes two coupled quantum Systems. One of them would
be the system of our interest and the other one the environment. Both systems have their own
Hilbert spaces, which are connected by the tensor product. Therefore, the Hilbert space of the
total system can be written as

Htotal = H⊗HE.

Here H denotes the systems Hilbert space and HE the environments Hilbert space. Analogous
the Hamiltonian Htotal(t) for the total system can be decomposed out of the Hamiltonian for the
quantum system and out of the Hamiltonian for the environment as

Htotal(t) = H(t)⊗ IE + I ⊗HE(t) +HI(t)

with the identity operator I. The additional Hamiltonian HI(t) describes the interaction between
the two systems. Due to this interaction, the dynamics of the system we are looking at are in
general not unitary. Trying to solve this at all could get quickly complicated because of the huge
amount of degrees of freedom of the environment. But under certain assumptions, one can find an
approximate equation for the quantities we are interested in. This leads to the so called Master
equations.

2.3 Lindblad master equation

For the system we are going to have a look on later, we will use the Lindblad master equation for
the density matrix ρ on H. This equation is similar to the Liouville-von Neumann equation but it
contains an additional term, which is called the dissipator D(ρ(t)):

d
dtρ(t) = − i

~
[H(t), ρ(t)] +D(ρ(t))

The Dissipator includes the Lindblad or jump operators L of the system2

D(ρ(t)) =
∑
i

γi(t) · (Liρ(t)L†i −
1
2L
†
iLiρ(t)− 1

2ρ(t)L†iLi)

with γi ∈ R≥0. The Lindblad equation describes a non-unitary time-evolution. Note that it
preserves the hermiticity, the trace, and the positive semidefiniteness of ρ. Besides, it is a Markovian
master equation, which means that one neglects memory effects in this case. One also says that
the dynamics of our system of interest can be described by a quantum dynamical semigroup.

The Lindblad master equation can also be written down in the Heisenberg picture, in which the
density matrix is constant. This leads to

d
dtA(t) = i

~
[H,A(t)] +

∑
i

γi(t) · (L†iA(t)Li −
1
2L
†
iLiA(t)− 1

2A(t)L†iLi) (2.2)

for an arbitrary Schrödinger operator A with no explicit time dependence. It might be easier to
just calculate the expectation values of the quantities of interest by solving the Lindblad equation
in the Heisenberg picture for them than solving the equation for the whole density matrix. We are
going to see this later.

2These are a basis of operators acting on the Hilbert space.
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3 Dissipatively driven waveguides

The model we are going to use to describe the waveguides is depicted in figure 3.1. The photons
propagate through the waveguides along the y-direction with the possibility of tunnelling to the
nearest neighbour sites and dissipating out of the system. The propagation distance y corresponds
to the time t, and thus, the time-dependence of the tunnelling amplitude and dissipation strength
arises due to the spatial variations of the waveguides along the y-direction. An example for the
experimental realisation can be found in the paper of Cherpakova (2018).

x

t

J1(t) J2(t) J3(t) J4(t) J5(t) . . . JL−1(t)

. . .

1 2 3 4 5 6 L− 1 L

J1(t) J2(t) J3(t) J4(t) J5(t) JL−1(t)

. . .

. . .

· · ·

γ1(t) γ2(t) γ3(t) γ4(t) γ5(t) γ6(t) . . . γL−1(t) γL(t)

x

t

Figure 3.1: Waveguide model: Top view above and front view below: The Photons propagate
through the waveguides and can tunnel to the neighbouring sites (top view). Besides,
they can dissipate from the system (front view). Every waveguide is numbered from 1
to L. Ji(t) denotes the hopping amplitude to the nearest neighbour sites and γi(t) the
dissipation strength.

Consequently, the most general form of the corresponding Hamiltonian we are going to consider is
given by

H = −
L∑
i=1

Ji(t)(b†i bi+1 + b†i+1bi)

with the hopping amplitude J(t) and the bosonic creation and annihilation operators b†i and bi for
each site i1. These operators fulfil the following well known commutation relations:

[bi, bj ] = 0 = [b†i , b
†
j ] , [bi, b†j ] = δij

1Note that site L+ 1 is identified with site 1.
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3 Dissipatively driven waveguides

The Hilbert space H is uniquely defined by the vacuum |0〉 satisfying

bi |0〉 = 0 and 〈0|0〉 = 1

and n-particle states

b†i1 . . . b
†
in
|0〉 .

The particle number operator for site i is defined by

ni ..= b†i bi.

In general, every waveguide has the property of losing photons. We are going to describe this
in two different ways. On the one hand, we will use the Lindblad master equation as mentioned
above. Then the dissipator D(ρ(t)) takes the form

D(ρ(t)) =
L∑
i=1

γi(t) · (biρ(t)b†i −
1
2b
†
i biρ(t)− 1

2ρ(t)b†i bi)

where γi(t) describes the strength of the dissipation at site i. On the other hand, we will add a non-
hermitian part to the Hamiltonian, which causes a non-unitary time-evolution. As a consequence,
the system is also losing photons so the dissipation can be described as well with this formalism.
The corresponding Hamiltonian is then given by

H = −
L∑
i=1

Ji(t)(b†i bi+1 + b†i+1bi)− i
γi(t)

2 b†i bi. (3.1)

For the following calculations, we will always work in units such that ~ = 1.
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4 The homogeneous system

We start by considering the waveguides introduced in chapter 3 as a homogeneous system. Hence,
the hopping amplitude J(t) and the strength of the dissipation γ(t) are the same for each waveguide.
Note that JL(t) 6= 0 and so we are working with periodic boundary conditions. We will solve the
problem within the Lindblad formalism and also by using a non-hermitian Hamiltonian.

4.1 Solution within the Lindblad formalism

Solving the Lindblad equation in the Schrödinger picture for arbitrary numbers of waveguides and
particles requires the diagonalization of matrices with varying dimensions. But in the Heisenberg
picture we can get the information we are interested in also by solving a closed system of differential
equations for the operators b†i (t)bj(t). For these equations, we can find a general solution.

Plugging in an arbitrary operator b†i (t)bj(t) in equation 2.2 and using the commutation relations
we get

d
dt (b

†
i (t)bj(t)) =− iJi−1(t)b†i−1(t)bj(t) + iJj(t)b†i (t)bj+1(t)− iJi(t)b†i+1(t)bj(t)

+ iJj−1(t)b†i (t)bj−1(t)− 1
2b
†
i (t)bj(t)(γi(t) + γj(t)).

(4.1)

You can find an explicit derivation in the appendix A.1. For the homogeneous system this simplifies
to

d
dt (b

†
i (t)bj(t)) =− iJ(t)

(
b†i−1(t)bj(t)− b†i (t)bj+1(t) + b†i+1(t)bj(t)− b†i (t)bj−1(t)

)
− γ(t)b†i (t)bj(t).

(4.2)

We solve this equation with a Fourier transformation. Hence, we define our new operators by

dl ..= 1√
L

L∑
j=1

e−2πijl/Lbj , d†l
..= 1√

L

L∑
j=1

e2πijl/Lb†j . (4.3)

These new operators still fulfil the same commutation relations as the original operators:

[da, db] = 1
L

L∑
j,j′=1

e−2πija/Le−2πij′b/L [bj , bj′ ]︸ ︷︷ ︸
0

= 0

[d†a, d
†
b] = 1

L

L∑
j,j′=1

e2πija/Le2πij′b/L [b†j , b
†
j′ ]︸ ︷︷ ︸

0

= 0

[da, d†b] = 1
L

L∑
j,j′=1

e−2πija/Le2πij′b/L [bj , bj′ ]︸ ︷︷ ︸
δj,j′

= 1
L

L∑
j=1

e2πij(b−a)/L = δa,b
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4 The homogeneous system

For these new operators we obtain

d
dt (d

†
a(t)db(t)) = 1

L

L∑
l,l′=1

e2πila/Le−2πil′b/L d
dt (b

†
l (t)bl′(t))

= 1
L

L∑
l,l′=1

e2πi(la−l′b)/L
(
−iJ(t)

(
b†l−1(t)bl′(t)− b†l (t)bl′+1(t) + b†l+1(t)bl′(t)

− b†l (t)bl′−1(t)
)
− γb†l (t)bl′(t)

)
=
(
−iJ(t)(e2πia/l − e2πib/l + e−2πia/l − e−2πib/l)− γ(t)

)
d†a(t)db(t)

=
(
−2iJ(t)

(
cos
(

2π a
L

)
− cos

(
2π b
L

))
− γ(t)

)
d†a(t)db(t)

with the unique solution

d†a(t)db(t) = exp
{∫ t

0
−2iJ(t′)

(
cos
(

2π a
L

)
− cos

(
2π b
L

))
− γ(t′)dt′

}
d†a(0)db(0).

For the expectation value of the original operators we thus have

〈b†l (t)bl′(t)〉 = 1
L

L∑
a,b=1

〈d†a(0)db(0)〉 · exp{−2πila/L} · exp{2πil′b/L}

· exp
{∫ t

0
−2iJ(t′)

(
cos
(

2π a
L

)
− cos

(
2π b
L

))
− γ(t′)dt′

}
where the constant 〈d†a(0)db(0)〉 only depends on the initial conditions in form of the density matrix
and relates to the expectation value of the original operators by

〈d†a(0)db(0)〉 = 1
L

L∑
l,l′=1

e2πila/Le−2πil′b/L〈b†l (0)bl′(0)〉.

One interesting quantity is the decay of the total number of particles in the system, which can be
evaluated by

L∑
i=1
〈ni(t)〉 =

L∑
l=1
〈b†l (t)bl(t)〉

=
L∑

a,b=1

1
L

L∑
l=1

exp{−2πil(a− b)/L}︸ ︷︷ ︸
δa,b

·〈d†a(0)db(0)〉

· exp
{∫ t

0
−2iJ(t′)

(
cos
(

2π a
L

)
− cos

(
2π b
L

))
− γ(t′)dt′

}
=

L∑
a=1
〈d†a(0)da(0)〉 · exp

{∫ t

0
−2iJ(t′)

(
cos
(

2π a
L

)
− cos

(
2π a
L

))
− γ(t′)dt′

}

=
L∑

l,l′=1

1
L

l∑
a

exp{2πia(l − l′)/L}︸ ︷︷ ︸
δl,l′

·〈b†l (0)bl′(0)〉 · exp
{
−
∫ t

0
γ(t′)dt′

}

=
L∑
l=1
〈b†l (0)bl(0)〉 · exp

{
−
∫ t

0
γ(t′)dt′

}
. (4.4)
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4.1 Solution within the Lindblad formalism

We conclude that for a time-independent dissipation the decay of the total number of particles
goes exponentially with γ. You can find an example in figure 4.1.

0 2 4 6 8 10 12 14
t ·J0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14
t · J0.0

0.2

0.4

0.6

0.8

1.0

n1(t)

n2(t)

n1(t) +n2(t)

Figure 4.1: Evolution of the particle numbers in time by considering two waveguides with one
particle starting on the first one. The analytic solutions are following from equation
4.4 in the Lindblad formalism: n1(t) = e−γt cos2(2Jt), n2(t) = e−γt sin2(2Jt) and
n1(t) + n2(t) = e−γt. Parameters: left: γ = 0.1 · J , right: γ = 0.5 · J .

For a time-dependent dissipation like

γ(t) = γ0 · (1 + sin(ωt))

the decay takes the form

L∑
i=1
〈ni(t)〉 =

L∑
l=1
〈b†l (0)bl(0)〉 · e−γ0t+ γ0cos(ωt)

ω − γ0
ω .

An example for this behaviour is depicted in figure 4.2.
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t ·J0.0
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Figure 4.2: Evolution of the particle numbers in time by considering two waveguides with one
particle starting on the first one with γ0 = 0.1 · J . The analytic solutions are following
from equation 4.4 in the Lindblad formalism: n1(t) = e−γ0t+ γ0cos(ωt)

ω − γ0
ω cos2(2Jt),

n2(t) = e−γ0t+ γ0cos(ωt)
ω − γ0

ω sin2(2Jt) and n1(t)+n2(t) = e−γ0t+ γ0cos(ωt)
ω − γ0

ω . Parameters:
left: ω = 0.5 · J , right: ω = 1 · J .

As one would expect, the system exponentially loses particles in the time-independent case. If
one modulates the dissipation and makes it, for example, periodic in time the loss of the particles
changes accordingly.
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4 The homogeneous system

4.2 Solution with non-hermitian Hamiltonian

For the diagonalization of the non-hermitian Hamiltonian 3.1 we will use the same Fourier trans-
formation for our operators as defined in equation 4.3. One then gets the diagonalized Hamiltonian

H =
(
−2J(t)cos

(
2π l
L

)
− iγ(t)

2

)
︸ ︷︷ ︸

El(t)

d†l dl.

For the expectation value of our operators, this leads to

〈b†a(t)bb(t)〉 = 1
L2

L∑
l,l′,k,k′=1

exp{2πil/L(b− k)} · exp{−2πil′/L(a− k′)} · exp
{
i

∫ t

0
El′(t′)∗dt′

}

· exp
{
−i
∫ t

0
El(t′)dt′

}
〈b†k′(0)bk(0)〉

where 〈b†k′(0)bk(0)〉 depends on the initial conditions, which are now given in form of an initial
state. For the decay of the total number of particles in the system, one obtains

L∑
i=1
〈ni(t)〉 =

L∑
k=1
〈b†k(0)bk(0)〉 · exp

{
−
∫ t

0
γ(t′)dt′

}
,

which is equivalent to the solution one gets out of the Lindblad formalism.
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5 Systems with dissipative defects

As an example for a more interesting system, we will have a look at two waveguides but only one of
them having the property of losing photons. The hopping amplitude J is assumed to be constant.
You can find a graphical illustration in figure 5.1.

J

x

t

γ(t)

1 2

Figure 5.1: Front view of our two waveguide model. Photons can only dissipate from the first
waveguide. The hopping amplitude J is constant.

Again, we will assume periodic boundary conditions. In this case, the Lindblad equation takes the
form

d
dtρ(t) = −2iJ [(b†1b2 + b†2b1), ρ(t)] + γ(t) · (b1ρ(t)b†1 −

1
2b
†
1b1ρ(t)− 1

2ρ(t)b†1b1).

We want to find a general solution for the density matrix restricted to one-particle states and the
vacuum. As a basis for this subspace of the complete Hilbert space, we choose the states

|0, 0〉 ..= |0〉 , |1, 0〉 ..= b†1 |0〉 , |0, 1〉 ..= b†2 |0〉 .

The only non-vanishing part of the density matrix then reads

ρ =


〈1, 0| 〈0, 1| 〈0, 0|

|1, 0〉 a b e

|0, 1〉 c d f

|0, 0〉 g h i

.
Note that our Lindblad equation really reduces to an equation in this three-dimensional subspace.

5.1 Time-independent dissipative defect

First of all, we consider a time-independent dissipation strength γ. Again, we solve the problem
within the Lindblad formalism and also by using a non-hermitian Hamiltonian.

5.1.1 Solution within the Lindblad formalism

We can rewrite the Lindblad equation in the form

d
dtρ(t) = M · ρ(t)

where ρ now represents a nine-dimensional vector containing all the components of the density
matrix. With the matrix exponential the unique solution is given by

ρ(t) = eMtρ(0).
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5 Systems with dissipative defects

Diagonalizing M this can be written as

ρ(t) =
∑
n

αne
λntρn with ρ(0) =

∑
n

αn · ρn

where ρn denotes the eigenvectors and λn the corresponding eigenvalues. For our problem, the
Lindblad equation explicitly looks like this:

d
dt



a
b
c
d
e
f
g
h
i


=



−γ −2iJ 2iJ 0 0 0 0 0 0
−2iJ −γ/2 0 2iJ 0 0 0 0 0
2iJ 0 −γ/2 −2iJ 0 0 0 0 0
0 2iJ −2iJ 0 0 0 0 0 0
0 0 0 0 −γ/2 2iJ 0 0 0
0 0 0 0 2iJ 0 0 0 0
0 0 0 0 0 0 −γ/2 −2iJ 0
0 0 0 0 0 0 −2iJ 0 0
γ 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

M

·



a
b
c
d
e
f
g
h
i



Diagonalization of the matrix M leads to the following eigenvalues:

0, −γ2 , −
γ

2 ,
1
4

(
−γ −

√
γ2 − 64J2

)
,

1
4

(
−γ −

√
γ2 − 64J2

)
1
4

(
−γ +

√
γ2 − 64J2

)
,

1
2

(
−γ −

√
γ2 − 64J2

)
,

1
4

(
−γ +

√
γ2 − 64J2

)
,

1
2

(
−γ +

√
γ2 − 64J2

)
The eigenvectors can be found in the appendix A.2.

Now we can have a closer look on the solution for a certain initial condition. We consider the
initial condition that the particle starts at the second waveguide. In this case, the density matrix
is given by 1

ρ(0) =

 0 0 0
0 1 0
0 0 0

 . (5.1)

Consequently, the particle is not effected by the dissipation at the beginning. It is now interesting
to see how the particle is going to evolve in the two waveguides. Therefore, we will study the
expectation value of the particle number operators on site one and site two. One gets the following
equations:

〈n1(t)〉 =
64J2Sinh

(
1
4

√
γ2 − 64J2t

)2

γ2 − 64J2 e
−γt

2 (5.2)

〈n2(t)〉 =

(
γ2 − 32J2)Cosh( 1

2

√
γ2 − 64J2t

)
+ γ
√
γ2 − 64J2Sinh

(
1
2

√
γ2 − 64J2t

)
− 32J2

γ2 − 64J2 e
−γt

2

For describing the features of the decay, we distinguish the case γ < 8J where the eigenvalues
have an imaginary part from the case γ ≥ 8J . For γ < 8J one can see that there is again an
overall exponential decay of the total particle number, this time together with small oscillations,
which can be seen in figure 5.2. The parameters are the same as in the previous example for the
homogeneous system depicted in figure 4.1. Note that the exponential decay goes with γ/2 due to
the fact that the dissipation is only present on one of the two sites. Up to the factor of two in the
decay, it qualitatively agrees with the one of the homogeneous system.

1One can easily check that this is a valid density matrix as discussed in chapter 2.
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Figure 5.2: Evolution of the particle numbers in time for the two waveguide system depicted in
figure 5.1 with one particle starting on the second non-dissipative site. The analytic
solutions of the Lindblad equation are given in equation 5.2 and for the associated
homogeneous one they follow from equation 4.4. Parameters: left: γ = 0.1 · J , right:
γ = 0.5 · J .

For γ ≥ 8J we observe a different behaviour of the system for different dissipation strengths
in contrast to the homogeneous system. By increasing γ the strength of the exponential decay
decreases. In order to understand this, we look at the structure of the contributing eigenvalues
which, for our inital condition, are

0 , −γ/2 , 1
2

(
−γ −

√
γ2 − 64J2

)
and 1

2

(
−γ +

√
γ2 − 64J2

)
. (5.3)

Note that the first eigenvalue does not lead to a decay and corresponds to the pure vacuum state
(see the corresponding eigenvector in the appendix A.2). The other eigenvalues are responsible
for the decay. The asymptotic decay for large t is governed by the eigenvalue with the largest
real part. One can see that exactly at γ = 8J there is a breaking point from which on the last
eigenvalue determines the decay. This can be seen in figure 5.3.
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γ
J

-20

-15

-10

-5 Re- γ

2
 / J

1
2
Re -γ + γ2 - 64 J2 / J

1
2
Re -γ - γ2 - 64 J2 / J

Figure 5.3: Real part of the contributing eigenvalues given in 5.3 in the Lindblad formalism.

For large γ one finds that the decay approximately goes with

1
2

(
−γ +

√
γ2 − 64J2

)
= 1

2

−γ + γ

√
1−

(
8J
γ

)2


= 1
2

(
−γ + γ

(
1− 1

2

(
8J
γ

)2
))

+O
(

1
γ3

)
= −16J2

γ
+O

(
1
γ3

)
. (5.4)

The effect that the decay goes with 1/γ in the large γ limit is called the quantum Zeno effect.
Following Misra and Sudarshan (1977) and Fröml (2019), it describes that transitions between
quantum states are suppressed by a frequent measurement of the quantum system. The measure-
ment process corresponds in this case to the loss of photons.
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5 Systems with dissipative defects

Figure 5.4 depicts the quality of our approximation in the large γ limit. In the limit γ → ∞
the expectation value of the number of particles on site two goes to one while site one stays
unpopulated. Hence, the hopping is completely suppressed for finite times t.

2 4 6 8 10 12 14
t ·J

0.05

0.10

0.50

1

n2(t) for γ1

n2(t) for γ2

e
-16 J2γ1 t

e
-16 J2γ2 t

Figure 5.4: The exponential decay of the particle number of the second non-dissipative waveguide
for γ1 = 50 · J and γ2 = 100 · J following from equation 5.2 in the Lindblad formalism
in a logarithmic plot. In comparison one can see the approximated decay in the large
γ limit (equation 5.4).

A comment regarding the importance of the initial conditions for the occurance of the Zeno effect
is made at the end of the next paragraph.

5.1.2 Solution with non-hermitian Hamiltonian

Again, we now switch the formalism and describe this system with a non-hermitian Hamiltonian,
which is given by

H = −2J(b†1b2 + b†2b1)− iγ2 b
†
1b1.

Restricting to the one-particle Hilbert space this can be written in an explicit matrix form

H =
(
−iγ2 −2J
−2J 0

)
.

Diagonalization of the Hamiltonian gives us the following eigenvectors and eigenvalues:

(
−−iγ−

√
−γ2+64J2

8J
1

)
,

(
−−iγ+

√
−γ2+64J2

8J
1

)

1
4

(
−iγ −

√
−γ2 + 64J2

)
,

1
4

(
−iγ +

√
−γ2 + 64J2

)
(5.5)

The imaginary part of the eigenvalues is shown in figure 5.5. Again, we find that the breaking
point is at γ = 8J .
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Figure 5.5: Imaginary part of the eigenvalues given in 5.5 of the non-hermitian Hamiltonian.

In fact, we observe the same behaviour of the system for small dissipation strengths as well as for
high dissipation strengths in comparison to the solution of the Lindblad equation. Therefore, our
approximation for the slope in the large γ limit is also valid in this case. An example for that is
shown in figure 5.6.
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e
-16 J2γ1 t

e
-16 J2γ2 t

Figure 5.6: The exponential decay of the particle number of the second non-dissipative waveguide
for γ1 = 30 · J and γ2 = 60 · J considering the non-hermitian Hamiltonian in a logar-
ithmic plot. In comparison one can see the approximated decay in the large γ limit
(equation 5.4).

Note that in both cases we considered the initial condition that the particle starts on the non-
dissipative site. That is actually quite important in order to obtain the Zeno effect. If the particle
would start at the dissipative site it would just get immediately lost for high dissipation strengths.

In the next step, we are going to change the dissipation by making it periodic in time.
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5 Systems with dissipative defects

5.2 Time-dependent dissipative defect

Now we want to consider a time-depedent dissipation. We stick to the previous two waveguide
system depicted in figure 5.1 but modify the dissipation on the first waveguide to

γ(t) = γ0 · (1 + sin(ωt)).

We will first solve the resulting Lindblad equation numerically. After that we use Floquet theory
to solve the problem described by the non-hermitian Hamiltonian.

5.2.1 Numerical solution within the Lindblad formalism

We solve the set of differential equations in the Heisenberg picture following from equation 4.1
numerically with Mathematica. The system of differential equations is explicitly given by

d
dt 〈n1(t)〉+ γ(t)〈n1(t)〉 = −2iJ(〈b†2(t)b1(t)〉 − 〈b†1(t)b2(t)〉),

d
dt 〈b

†
1(t)b2(t)〉+ γ(t)

2 〈b
†
1(t)b2(t)〉 = −2iJ(〈n2(t)〉 − 〈n1(t)〉),

d
dt 〈b

†
2(t)b1(t)〉+ γ(t)

2 〈b
†
2(t)b1(t)〉 = −2iJ(〈n1(t)〉 − 〈n2(t)〉),

d
dt 〈n2(t)〉 = −2iJ(〈b†1(t)b2(t)〉 − 〈b†2(t)b1(t)〉).

As initial condition, we, again, take the density matrix 5.1, which corresponds to one particle being
on the second non-dissipative waveguide. This gives us the matrix components

〈n1(0)〉 = 0,

〈b†1(0)b2(0)〉 = 0,

〈b†2(0)b1(0)〉 = 0,
〈n2(0)〉 = 1.

First, we have a look at the solution for small values of the dissipation strength. Again, we obtain
a difference of a factor of two in the exponential decay and some oscillations in comparison to the
solution of the corresponding homogeneous system. We can find an example for that in figure 5.7.
This one considers the same parameters as the example of the homogeneous system depicted in
figure 4.2.
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Figure 5.7: Evolution of the particle numbers in time for the two waveguide system depicted in
figure 5.1 with one particle starting on the second non-dissipative site. The dissipation
on the first waveguide is periodic in time with γ0 = 0.1 · J . The expectation values
of n1(t) and n2(t) follow from the numerical solution of the corresponding Lindblad
equation in the Heisenberg picture. The analytic solutions of the Lindblad equation
for the associated homogeneous system follow from equation 4.4. Parameters: left:
ω = 0.5 · J , right: ω = 1 · J .
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5.2 Time-dependent dissipative defect

Secondly, we discover for high dissipation strengths several resonances at specific values of the
frequency ω where the strength of the decay strongly increases. This effect can be seen in figure
5.8.
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Figure 5.8: Evolution of the particle number on the second non-dissipative waveguide in time as
a function of the frequency ω of the dissipation strength γ(t) for different γ0. These
numerical solutions follow from the Lindblad equation in the Heisenberg picture. The
red colour indicates a high number of particles whereas the blue colour corresponds to
a low number of particles. The red lines in the second row clarify the frequency where
the resonance occurs: ω ≈ 2.87, ω ≈ 1.78 and ω ≈ 1.27 from left to right. Note that
n2(t) is plotted logarithmically.

Exemplary, we will now have a closer look on the behaviour of the system for γ0 = 50 · J . In
figure 5.8 you can find a sharp peak around ω = 1.78 ·J . Hence, we consider the expectation value
of n1(t) and n2(t) for this frequency in detail and in comparison also for two frequencies around
the resonance. Figure 5.9 shows that in general the expectation value of n2(t) starts decreasing
rapidly for sin(ωt) getting negative. In this cases, the expectation value of n1(t) peaks around the
minimum of sin(ωt). In the system where ω = 1.78 · J the particle is completely lost after one
period 2π/ω. With other frequencies around the resonance the particle stays longer in the system.
Qualitatively, this again corresponds to the Zeno effect. At the beginning, the system is already
in the Zeno limit because of the high dissipation strength. As a consequence the hopping of the
particle to the first waveguide is suppressed and n1(t) is zero. But when the sin(ωt) gets negative
the whole dissipation strength becomes small. At this point the system is no longer in the Zeno
limit and the hopping of the particle to the first waveguide is more likely then before. Then the
particle gets lost very quickly.
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Figure 5.9: Evolution of the particle number on the first dissipative and second non-dissipative
waveguide for γ0 = 50·J in time for different frequencies ω. The considered expectation
values of n1(t) and n2(t) follow from the numerical solution of the Lindblad equation.

5.2.2 Numerical solution within Floquet theory

In order to get an approximate analytic solution, we now try to solve the problem for the non-
hermitian Hamiltonian

H(t) = −2J(b†1b2 + b†2b1)− iγ(t)
2 b†1b1.

We will, again, restrict to the two dimensional one-particle Hilbert space. For the choosen time
periodic dissipation γ(t) = γ0 · (1 + sin(ωt)) the Hamiltonian is also periodic in time

H(t+ 2π/ω) = H(t),

and thus, we try to solve the problem by using Floquet theory. One can find a good introduction
to Floquet theory in general in Holthaus (2015). For our purpose, we mainly follow Cherpakova
(2018). In analogy to Bloch’s theorem, a basis of solutions for the Schrödinger equation is given
by

|Ψα(t)〉 = e−iεαt |uα(t)〉

with the Floquet states |uα(t)〉 also having period 2π/ω. The εα are called quasienergies. Note that
the quasienergies defined by this relation are only unique (given a state |ψα(t)〉) up to multiples of
ω.

The Floquet modes, thus, need to satisfy(
H(t)− i ∂

∂t

)
|uα(t)〉 = εα |uα(t)〉 .

Since the Hamiltonian as well as the Floquet modes are time periodic, we can use a discrete Fourier
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5.2 Time-dependent dissipative defect

transformation and write them as

H(t) =
∞∑

k=−∞
e−ikωtHk

|uα(t)〉 =
∞∑

k=−∞
e−ikωt

∣∣ukα〉 .
For the modes we get the time-independent Floquet equation

(H0 − kω)
∣∣ukα〉+

∑
l 6=0

Hl

∣∣uk−lα

〉
= εα

∣∣ukα〉 .
In our case, the decomposition of the Hamiltonian reads

H(t) =
(
−iγ0

2 −2J
−2J 0

)
︸ ︷︷ ︸

H0

+
(

γ0
4 0
0 0

)
︸ ︷︷ ︸

H1

e−iωt +
(
−γ0

4 0
0 0

)
︸ ︷︷ ︸

H−1

eiωt

and so the equation for the modes is

. . .
H1 H0 + ωI H−1

H1 H0 H−1
H1 H0 − ωI H−1

. . .





...
u−1
α

u0
α

u1
α
...

 = εα



...
u−1
α

u0
α

u1
α
...

 .

The idea now is to truncate this matrix to a 2(2n+ 1) dimensional matrix and solve the resulting
finite dimensional eigenvalue problem. Considering enough frequency modes (n big enough) leads
to a convergence of the eigenvalues in the sense that all eigenvalues can be generated by taking
two eigenvalues and adding multiples of ω. We will always pick the two eigenvalues ε1 and ε2 from
some Brillouin zone

ω0 − ω/2 < Re(εα) ≤ ω0 + ω/2.

With the two chosen eigenvalues and the corresponding eigenvectors, we have found an approx-
imation for the two basis states |ψα(t)〉, which solve the Schrödinger equation. A general solution
can then be written as

|Ψ(t)〉 =
2∑

α=1

n∑
k=−n

cαe
−iεkαt

∣∣ukα〉 ,
where the coefficients cα are determined by the initial conditions.

The convergence is depending much on the considered values for the dissipation strength and the
frequency. Depending on the parameters, we need to take at least ten to fifteen frequency modes
into account. Figure 5.10 shows that, for smaller numbers of frequency modes n, you cannot
determine significant results. Thus, the following results include fifteen frequency modes.
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Figure 5.10: Evolution of the particle number on the first dissipative and second non-dissipative
waveguide for γ0 = 50 · J in time for different frequencies ω. The numerical solution
of the corresponding Lindblad equation is compared to the one following by solving
the problem with Floquet theory for different numbers of frequency modes n.

First of all, one again obtains the same behaviour of the system as before with the Lindblad
formalism. You can find an example for that in figure 5.11. The expectation values from both
formalisms lie on top of each other which verifies the convergence of the eigenvalues. To underline
this, we used the same parameters as in the previous example in figure 5.10.
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Figure 5.11: Evolution of the particle number on the first dissipative and second non-dissipative
waveguide for γ0 = 50 · J in time for different frequencies ω. The numerical solution
of the corresponding Lindblad equation is compared to the one following by solving
the problem with Floquet theory. In this case, fifteen frequency modes were taken
into account.

Of interest are now the quasienergies of the Floquet-modes. In figure 5.12 one sees the imaginary
part of the eigenvalue with the largest imaginary part depending on the frequency ω for the same
fixed values of γ0 as in figure 5.8. This value indicates the large time dynamics of the system and
corresponds to the expected decay. There you can find the same resonance peaks for high values
of γ0 as in figure 5.8 represented by the red lines. Besides, smaller resonances are better visible.
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Figure 5.12: Imaginary part of the eigenvalue εα with the largest imaginary part depending on
the frequency ω for different γ0. The red lines in the second row correspond to the
resonance frequency depicted in figure 5.8.

Unfortunately, this approach does not give us an analytic expression for the quasienergies depending
on the parameters of our system. Therefore, it does not allow us to analyse the reason for the
occurance of these resonances at specific frequencies in detail.
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6 Summary

After a short introduction to closed and open quantum systems, we reviewed the most important
properties of the Lindblad master equation. This equation was one method we used to describe
the model of dissipatively driven waveguides. We also tried to characterize the problem with a
non-hermitian Hamiltonian.

In general, our waveguide model includes the hopping of the photons to the nearest neighbour sites
as well as a possible loss of photons on every waveguide. In our description, this dissipation is the
result of the dissipator D(ρ) in the Lindblad master equation and, in the other formalism, of the
non-hermitian part of the Hamiltonian.

First of all, we had a look at a homogeneous system. Thus, the hopping amplitude J(t) and the
dissipation strength γ(t) are the same for every waveguide. Furthermore, we used periodic bound-
ary conditions. With the help of a Fourier transformation of our bosonic operators we managed to
solve the Lindblad master equation in the Heisenberg picture and to diagonalize the non-hermitian
Hamiltonian. We saw that the total number of particles in the system decays exponentially with
γ in the time-independent case. For a time-dependent γ, we observe an exponential decay with an
associated time-dependent strength. Both formalisms lead to this result.

After that, we concentrated on a system, which consists of two waveguides but only one of them
having the property of losing photons. In this case, we solved the Lindblad master equation for the
whole density matrix restricted to one-particle states. Starting with a time-independent dissipation,
one finds for small values of γ an exponential decay of the total number of particles, which is similar
to the decay in the corresponding homogeneous system. But now the decay goes with half of the
dissipation strength then before and contains some oscillations. Besides, the system gets into the
Zeno limit for γ ≥ 8J . Hence, the hopping of the particle to the dissipative site is suppressed.
The decay is in this case proportional to 1/γ. Note that this behaviour is a consequence of the
chosen initial condition. If we consider that the particle starts on the dissipative site we would not
observe the Zeno effect. Again, the results of both formalisms agree.

In the last step, we changed the dissipation for the same two waveguide system and made it periodic
in time. In this case, we solved the Lindblad master equation in the Heisenberg picture numerically
and compared it to the solution of the non-hermitian Hamiltonian using Floquet theory. While the
behaviour of the system was again similar to the homogeneous one up to a factor of two for small
values of γ, we observe for bigger ones resonances at specific frequencies ω. At these frequencies,
the particle gets lost very quickly in comparison to other ones. These resonances also occur in the
imaginary part of the eigenvalues of the Floquet modes. It is still unclear why these resonances
occur at exactly these frequencies. But in general, the periodic change of the dissipation strength
let the system switch between being in the Zeno limit and allowing the hopping of the particle to
the dissipative site.

23





A Appendix

A.1 Derivation of our Lindblad equation in the Heisenberg picture

Plugging in the operators b†i (t)bj(t) in the Lindblad equation in the Heisenebrg picture 2.2 we get

d
dt (b

†
i (t)bj(t)) = −i

L∑
l=1

Jl(t)[b†l (t)bl+1(t) + b†l+1(t)bl(t), b†i (t)bj(t)]︸ ︷︷ ︸
∗

+
L∑
l=1

γl(t)
(
b†l (t)b

†
i (t)bj(t)bl(t)−

1
2{b
†
l (t)bl(t), b

†
i (t)bj(t)}

)
︸ ︷︷ ︸

∗∗

.

Using the commutation relations we then have

∗ = −i
L∑
l=1

Jl(t)
(
b†l (t)

(
[bl+1(t), b†i (t)]bj(t) + b†i (t)[bl+1(t), bj(t)]

)
+
(

[b†l (t), b
†
i (t)]bj(t) + b†i (t)[b

†
l (t), bj(t)]

)
· bl+1(t)

+ b†l+1(t) ·
(

[bl(t), b†i (t)]bj(t) + b†i (t)[bl(t), bj(t)]
)

+
(

[b†l+1(t), b†i (t)]bj(t) + b†i (t)[b
†
l+1(t), bj(t)]

)
· bl(t)

)
= −iJi−1(t)b†i−1(t)bj(t) + iJj(t)b†i (t)bj+1(t)− iJi(t)b†i+1(t)bj(t) + iJi−1(t)b†i (t)bj−1(t)

and

∗∗ =
L∑
l=1

γl(t)
(
b†l (t)([b

†
i (t), bl(t)] + bl(t)b†i (t))bj(t)−

1
2b
†
l (t)bl(t)b

†
i (t)bj(t)−

1
2b
†
i (t)([bj(t), b

†
l (t)]

+ b†l (t)bj(t))bl(t)
)

=
L∑
l=1

γl(t)
(
− δi,lb†l (t)bj(t) + b†l (t)bl(t)b

†
i (t)bj(t)−

1
2b
†
l (t)bl(t)b

†
i (t)bj(t)−

1
2δj,lb

†
i (t)bl(t)

− 1
2b
†
i (t)b

†
l (t)bj(t)bl(t)

)
=

L∑
l=1

γl(t)
(
−δi,lb†l (t)bj(t) + 1

2b
†
l (t)bl(t)b

†
i (t)bj(t)−

1
2δj,lb

†
i (t)bl(t)−

1
2b
†
l (t)([b

†
i (t), bl(t)]

+ bl(t)b†i (t))bj(t)
)

=− 1
2b
†
i (t)bj(t)(γi(t) + γj(t))

and so equation 4.1 follows.
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A.2 Eigenbasis for diagonalization of Lindblad equation

The eigenvectors of the matrix M defined in 5.1.1 are given by:

0
0
0
0
0
0
0
0
1





− 1
2

− iγ
8J
0
− 1

2
0
0
0
0
1





0
1
1
0
0
0
0
0
0





0
0
0
0
0
0

−i
(
γ+
√
γ2−64J2

)
8J
1
0





0
0
0
0

i
(
γ+
√
γ2−64J2

)
8J
1
0
0
0





0
0
0
0
0
0

i
(
−γ+
√
γ2−64J2

)
8J
1
0




−γ+
√
γ2−64J2

2γ
−4i
(
γ2J−64J3+γJ

√
γ2−64J2

)
γ
√
γ2−64J2

(
γ+
√
γ2−64J2

)
4i
(
γ2J−64J3+γJ

√
γ2−64J2

)
γ
√
γ2−64J2

(
γ+
√
γ2−64J2

)
−32J2

γ
(
γ+
√
γ2−64J2

)
0
0
0
0
1





0
0
0
0

−i
(
−γ+
√
γ2−64J2

)
8J
1
0
0
0





−γ−
√
γ2−64J2

2γ
4i
(
−γ2J+64J3+γJ

√
γ2−64J2

)
γ
√
γ2−64J2

(
−γ+
√
γ2−64J2

)
−4i
(
−γ2J+64J3+γJ

√
γ2−64J2

)
γ
√
γ2−64J2

(
−γ+
√
γ2−64J2

)
32J2

γ
(
−γ+
√
γ2−64J2

)
0
0
0
0
1


Note that the order corresponds to the one of the eigenvalues in 5.1.1.
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