

Novel Neutron Detector Developments

Three Detectors for Neutron Science

Deutsche Neutronenstreutagung 2024 - Aachen

17.09.2024

Thomas Block¹ (tmblock@uni-bonn.de), Klaus Desch¹, Jan Glowacz¹, Saime Gürbuz¹, Jochen Kaminski¹, Markus Köhli^{2,3}, Michael Lupberger¹, Jonathan Volz¹

¹Rheinische Friedrich-Wilhelms-Universität Bonn ²Ruprecht-Karls-Universität Heidelberg ³StyX Neutronica GmbH, Mannheim

GEFÖRDERT VOM

Detector Developments at University of Bonn

Boron lined GEM & Multichannel Readout

Neutron sensitive Microchannel Plate & Timepix3 readout

Neutron Time Projection Chamber

Detector Developments at University of Bonn

Boron lined GEM & Multichannel Readout

CASCADE – like detector (patent EP 00 122 360.1) Neutron sensitive Microchannel Plate & Timepix3 readout

Neutron Time Projection Chamber

Upgrade of neutron senstive MCP/Timepix detector, K. Watanabe et al. (2017)

Deutsche Neutronenstreutagung 2024 - Aachen

Boron bAsed MultiSTAge TRacking Detector (BASTARD)

Readout	2 x 3 VMM3a Hybrid ASIC
Hit Rate	10 MHz
Conversion via	Boron-lined GEM
Active Area	10 x 10 cm ²
Resolution	~ 100 μm

Boron bAsed MultiSTAge TRacking Detector (BASTARD)

Readout	2 x 3 VMM3a Hybrid ASIC
Hit Rate	10 MHz
Conversion via	Boron-lined GEM
Active Area	10 x 10 cm ²
Resolution	~ 100 μm

More infos:

See poster by Jan Glowacz contribution #84

Neutron Microchannel Plate (nMCP)

Readout	2 x 2 Timepix3 ASIC
Hit Rate	Max. 40 Mhits/cm²/s
Conversion via	¹⁰ B & ^{155/157} Ga doped MCP
Active Area	2.8 x 2.8 cm ²
Resolution	< 50 μm

Neutron Microchannel Plate (nMCP)

Readout	2 x 2 Timepix3 ASIC
Hit Rate	Max. 40 Mhits/cm²/s
Conversion via	¹⁰ B & ^{155/157} Ga doped MCP
Active Area	2.8 x 2.8 cm ²
Resolution	< 50 μm

More infos:

See poster by Saime Gürbüz contribution #87

Detector Developments at University of Bonn

Boron lined GEM & Multichannel Readout

Neutron sensitive Microchannel Plate & Timepix3 readout

Neutron Time Projection Chamber

Detector Readout - GridPix Chip

Detector Readout - GridPix Chip

Stage at T = 70.1 ° Fraunhofer IZM Chamber = 7.23e-004 Pa

Detector Readout - GridPix Chip

Gas Amplification of a single Electron Simulation with Garfield++

Credit: Markus Gruber, University of Bonn

Current Detector Design

Current Detector Design

Current Detector Design, Time Projection Chamber

Current Detector Design, Time Projection Chamber

Current Detector Design, Time Projection Chamber

Detector concept - GridPix Readout Chain

GridPix Octoboard

Deutsche Neutronenstreutagung 2024 - Aachen

Testing TPC and Readout with Cosmic Muons

Testing TPC and Readout with Cosmic Muons

Testing TPC and Readout with Cosmic Muons

Deutsche Neutronenstreutagung 2024 - Aachen

Current Detector Design, Trigger

Current Detector Design, Trigger

4 channels

4-channel Trigger Board

Trigger Board Control

Python script

Deutsche Neutronenstreutagung 2024 - Aachen

Summary & Outlook

Time-Projection-Chamber successfully built and tested

- Testing and installation of trigger ongoing
- **<u>Proof-of-Concept</u>**: measurement with sample in neutron beam

Data Analysis:

- Implementation of track-finder &
- Reconstruction of sample image in development

<u>Upgrade readout:</u>

- Timepix3/GridPix3 for higher readout rate
- Multi-stage conversion for enhanced neutron acceptance

Thank you!

Deutsche Neutronenstreutagung 2024 - Aachen

Backup - Trigger Board Schematic

Backup – FPGA Firmware + Interface

Backup – SiPM Amplifier Output

