Entwicklung eines Szintillationstriggers auf Basis von SiPMs für einen Neutronendetektor

<u>Fabian Schmidt</u>, Markus Köhli, Tim Wagner, Jochen Kaminski und Klaus Desch

Bundesministerium für Bildung und Forschung

Design of the BODELAIRE detector

Fabian P. Schmidt - Universität Bonn

Fabian P. Schmidt - Universität Bonn

Energy spectrum of conversion ions

Fabian P. Schmidt - Universität Bonn

Photon production by BC400 scintillator

Saint-Gobain, Organic Scintillation Materials and Assemblies, 2016

Fabian P. Schmidt - Universität Bonn

Photon transmission in light guide

Fabian P. Schmidt - Universität Bonn

The trigger prototypes

The 1st trigger prototype

- 150x15x4.7 mm³
- 2.8 mm BC408
- 1.9 mm float glass
- covered in aluminium foil

The 2nd trigger prototype

- 15x15x 1.2 mm
- 0.2 mm BC400
- 1 mm JGS1 glass

Scintillator readout with SiPM

Scintillation strip and SiPM mount

Coincidence unit with two SiPM channels

SiPM dark count rate

Measurement setup

Fabian P. Schmidt - Universität Bonn

Testing with MIPs – The hodoscope

- external scintillation trigger
- based on PMTs
- Trigger1: 7 x 1cm²
- Trigger2: 22 x 1 cm²
- Rate of coincident events (90° crossed): (0.54 +- 0.02) /min

signal waveforms

Fabian P. Schmidt - Universität Bonn

Light yield per MIP

Fabian P. Schmidt - Universität Bonn

Testing with α -particles

- self-triggered using the coincidence unit
- Threshold individually adjustable
- ²⁴¹Am source with 33 kBq

Integrated Spectrum of ²⁴¹Am-source

Fabian P. Schmidt - Universität Bonn

Summary & Outlook

- Development of the analog SiPM readout
- SiPM readout & coincidence unit for the neutron TPC trigger
- Characterisation of the trigger prototypes

Next steps:

- Characterisation of the scintillation trigger with design dimensions & boron coating
- Microcontroller-based threshold setting of the coincidence unit for threshold scans

Summary & Outlook

- Development of the analog SiPM readout
- SiPM readout & coincidence unit for the neutron TPC trigger
- Characterisation of the trigger prototypes

Next steps:

- Characterisation of the scintillation trigger with design dimensions & boron coating
- Microcontroller-based threshold setting of the coincidence unit for threshold scans

Thank you!

Fabian P. Schmidt - Universität Bonn

Range of the conversion ions

In the Boron layer

In the gas volume

Coincidence time in self-triggered mode

Fabian P. Schmidt - Universität Bonn

Dual SiPM signal map (zoomed out)

Fabian P. Schmidt - Universität Bonn