SUSY searches with Taus: The tau+muon channel

Till Nattermann Oxford Tau Workshop

University of Bonn

March 22, 2012

Outlook

- very brief outline of analysis
- concentrate on the tau-related aspects of the analysis
- main part: Rel 17 results with 4.64 $\rm fb^{-1}$:
 - investigate the tauID performance in the object selection
 - tauID in the background control regions used for data driven BG estimate
- small part still on Rel 16 results with 2.05 $\rm fb^{-1}$:
 - tau related systematic uncertainties
 - electron fakes in signal region

Analysis outline

Analysis goal

- looking for SUSY events with high missing energy, hadronic activity
- di-tau: hadronic decay and one leptonic decay
- use lepton for trigger
- have lepton as more reliable object (QCD suppression)
- so far only muon, electron channel just started
- most important background is tīt

Cutflow of object selection

	2011 Data	DiBoson	Drell Yan	Z+Jets	Top	W+Jets	SM
Pass GRL	$2.288801e{+}08$	773027.8	5.519403e+07	1.93506e+07	950153.5	$1.454805e{+}08$	$2.216514\mathrm{e}{+08{\pm}4.81\mathrm{e}{+04}}$
Pass Trigger	$1.369212e{+}08$	243248.4	275198.4	3559624	160926.1	2.38617e + 07	$2.807953\mathrm{e}{+}07{\pm}1.5\mathrm{e}{+}04$
Pass cleaning cuts	$1.32618e{+}08$	234040.2	269193.1	3372636	150169.9	2.220467e + 07	$2.621028\mathrm{e}{+07}{\pm}1.44\mathrm{e}{+04}$
Pass $N_{\rm jet}^{60~{\rm GeV}} \ge 1$	$3.163059e{+}07$	58104.91	21555.11	149538.5	115378.5	811682.4	$1145035{\pm}1.27\mathrm{e}{+}03$
Pass $N_{\mu}^{20~{\rm GeV}}=1$	1290501	25303.17	10605.48	60519.91	71658.61	724894.8	$883775 \pm 1.17e + 03$
Pass $N_{\tau} \ge 1$ (no BDT cut)	188705	7863.285	1944.515	10089.88	28891.3	99302.56	146196.4 ± 314
Pass $M_{\rm T}^{\ell} > 50~{\rm GeV}$	89190	4253.286	391.1873	4011.407	19610.93	69136.5	96058.27 ± 257

cutflow

- TauID has still no BDT cut, only preselection
- still much QCD
- apply cut on $M_{\rm T}^\ell > 50~{\rm GeV}$
- following Rel17 results will be with this preselection
- slight excess in MC

TauID Variables before BDT cut (only preselection)

TauBDT and ΔR to closest jet

- left: all taus, middle: 1-prong, right: 3-prong
- slightly lesser high BDT-taus in data, MC overestimates high BDT tail
- three prongs seem to be better described (fakes)

5

Tau kinematic Variables

Applying the BDT cuts

	2011 Data	DiBoson	Drell Yan	Z+Jets	Top	W+Jets	SM
Pass $N_{\tau} \ge 1$	13350	3408.3	214	2636.7	3164.3	7892	17217 ± 125
Purity	-	0.85	0.16	0.71	0.34	0	0.34
BDT medium	8225	2735.6	138.7	2028.9	2094.4	4510.6	$11454{\pm}104$
Purity	_	0.89	0.22	0.77	0.42	0	0.42
BDT tight	3279	1552.9	60.9	1105.7	914.2	1447.7	5063.4 ± 73.4
Purity	-	0.94	0.3	0.84	0.58	0	0.58

cutflow

- selection includes: trigger, cleaning, muon, tau BDT loose
- Tau-preselection and $M_{
 m T}^\ell > 50$ GeV: data: 89190; MC: 96058.27
- MC/data ratio gets worse: loose: 1.29, medium: 1.39, tight: 1.45
- tau-like fakes worse described in MC (high BDT tail)
- purity: fraction of events where tau is truth matched

Tau Pt and BDT after object selection

Scale Monte Carlo to data in control regions

- μ -requirement has impact on expected purity of $\tau: W \to \mu \nu_{\mu} + \tau_{\mathsf{fake}}$
- Define three control regions enriched with:

]
$$W+{
m jets}
ightarrow \mu
u_{\mu}+ au_{{
m fak}}$$

- 2 Top with fake taus: $W
 ightarrow \mu
 u_{\mu}$ and $W_{
 m had}
 ightarrow au_{
 m fake}$
- **(3)** Top with true taus: $W \rightarrow \mu \nu_{\mu}$ and $W \rightarrow \tau \nu_{\tau}$
- Get scaling factors for ω_{W_f} , ω_{T_f} and ω_{T_t}

$\underbrace{\begin{pmatrix} N_{1}^{\text{data}} - N_{1}^{\text{QCD,data}} - N_{1}^{\text{rest-MC}} \\ N_{2}^{\text{data}} - N_{2}^{\text{QCD,data}} - N_{2}^{\text{rest-MC}} \\ N_{3}^{\text{data}} - N_{3}^{\text{QCD,data}} - N_{3}^{\text{rest-MC}} \end{pmatrix}}_{\vec{N}} = \underbrace{\begin{pmatrix} N_{1}^{W-\text{MC}} & N_{1}^{\text{fake top-MC}} & N_{1}^{\text{truth top-MC}} \\ N_{2}^{W-\text{MC}} & N_{2}^{\text{fake top-MC}} & N_{2}^{\text{truth top-MC}} \\ N_{3}^{W-\text{MC}} & N_{3}^{\text{fake top-MC}} & N_{3}^{\text{truth top-MC}} \end{pmatrix}}_{\vec{M}} \underbrace{\begin{pmatrix} \omega_{W_{f}} \\ \omega_{T_{f}} \\ \omega_{T_{t}} \end{pmatrix}}_{\vec{\omega}}}_{\vec{\omega}}$ Invert A, multiply to \vec{N} , uncertainties: vary all parameters

Defining the control regions

Scalings (data driven estimate for most important backgrounds)

- Top with truth taus: 0.98±0.07 (Rel16: 0.55±0.12)
- Top with fake taus: 0.86± 0.04 (Rel16: 0.85±0.13)
- W with fake taus: 0.41±0.02 (Rel16: 0.47±0.02), talk from Alex Wed.
- Rel16-analysis: most discussed topic was Top truth scale
- Rel16 analysis: scalings are due to tau
- different ω_{W_f} and ω_{T_f} transverse momentum / event topology

Scalings for different tauID

Tau ID Variables in combined Top control region

Comparing Rel16 and Rel17 in Top control region

14

Comparison of Rel16 and Rel17 in Top CR

- top: Rel17; bottom: Rel16
- agreement is better in Rel17

Systematic uncertainties (Rel16, 2.05fb⁻¹)

	$\Lambda = 30 \text{ TeV} \\ \tan \beta = 20$	Standard Model
JES (%)	8.9	20.8
TES (%)	2.6	24.9
JER (%)	2.8	15.4
TauID (%)	3.9	13.3
μ -ID (%)	1.6	1.8
scale (%)	-	11.7
PDF and NLO scale (%)	9.3	-
Lumi (%)	3	_

Systematic uncertainties in signal region

- TauID: tau fake rate and identification efficiency uncertainty
- μ-ID: Muon p_T smearing in ID and MS
- Scale: Uncertainties on data driven scalings
- PDF and NLO scale uncertainties from Prospino
- Lumi background: only 7.6% of background is unscaled: 2.3‰

Electron fakes in event selection

	$\substack{\Lambda=30 \text{ TeV} \\ \tan\beta=20}$	DiBoson	Drell Yan	Z+Jets	Top	W+Jets	$_{\rm SM}$
Pass $M_{\rm eff} > 800~{\rm GeV}$	31.7	0	0	0.0914	1.28	0.916	$2.28{\pm}0.72$
$e\text{-fake}$ rate (%) $M_{\rm eff} > 100~{\rm GeV}$	0	0.046	0	0	6.042	0.517	3.598

signal region with Medium <i>e</i> -veto										
• few <i>e</i> fakes, about 3.5%, can I gain by changing to tight or loose										
% Deviation $\frac{\text{Tight } e\text{-Veto}}{\text{Loose } e\text{-Veto}}$	$\Lambda = 30 \text{ TeV} \\ \tan \beta = 20$	DiBoson	Drell Yan	Z+Jets	Top	W+Jets	$_{\rm SM}$			
Pass $M_{\rm eff} > 100~{\rm GeV}$	-7.29 1.53	-11.21 8.73	0 0	-6.95 1.11	$-9.43 \\ 5.15$	-6.4 1.63	-8.03 3.45			
Pass $M_{\rm eff} > 300~{\rm GeV}$	-7.32 1.59	-10.77 10.61	0 0	$-18.89 \\ 0$	$-9.17 \\ 5.04$	$-8.35 \\ 0.56$	-9.44 3.86			
Pass $M_{\rm eff} > 500~{\rm GeV}$	-7.72 1.73	-35.55 2.72	0 0	$-1.16 \\ 0$	$-7.85 \\ 1.65$	$-8.11 \\ 0$	$-7.62 \\ 1.25$			

relative deviation to medium e veto when using tight or loose

- tight: reduce signal by 7%, background by pprox 10%, worse significance
- loose: gain in signal only < 2%

Conclusions

- Many things have improved in Rel17: Thanks to the TauWG for that!
- ... praise is still a little bit preliminary
- most Tau studies done with W and Z, Top more important for many SUSY analysis (good progress: talk from Pier-Olivier on Thu.)
- Top truth contributions seem to be much better (correctly) described
- Tau energy scale uncertainty has big influence on the event selection
- choice el-fake veto not so crucial for this analysis
- tau-fakes in $W \rightarrow \mu \nu_{\mu}$ -events still over predicted in MC?

most important task

- Understand tau-fake rates in data in control regions
- high BDT tail over estimated in MC
- how to transfer this knowledge to our signal area (p_T dependent scalings)
- Alex talk on Wed: nice to see that there is progress

Variables defining the control regions

