Stau im LHC

Entdeckungspotential für *R*-Paritätsverletzende supersymmetrische Modelle

Sebastian Fleischmann Arbeit in Kollaboration mit Klaus Desch, Herbi Dreiner, Sebastian Grab und Peter Wienemann

Physikalisches Institut, Universität Bonn

42. Herbstschule für Hochenergiephysik Maria Laach 09. September 2010

، (ال) المعر التعادية الت معادية التعادية التعاديم التعادية التعادية التعادية التعادية التعادية التعادية التعادي التعادية الت المادي التعادية التعادية التعادية التعادية التعادية

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

1 Einführung in *R*-Paritätsverletzende Supersymmetrie

2 RPV Beispiel-Szenarien

3 Ereignis-Selektion

4 Entdeckungspotential

- 5 Abschätzung der Stau-Masse
- 6 Zusammenfassung

Einleitung Supersymmetrie

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

Supersymmetry (SUSY): Fundamentale Symmetrie zwischen Fermionen und Bosonen

- Löst Hierarchieproblem der Higgs-Masse durch gegenseitige Aufhebung von Boson- und Fermion-Beiträgen
- ▶ Liefert Vereinheitlichung der drei Standard-Modell (SM)-Kopplungen bei M_X ≈ 10¹⁶ GeV: Einbettung in Vereinheitlichte Theorie

SUSY-Teilchen im MSSM

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

Minimale supersymmetrische Version des SM (MSSM) erfordert Verdopplung der Freiheitsgrade

Names				spin 0		spin 1	/2
sq	Q		$(\widetilde{u}_L \ \widetilde{d}_L$)	$(u_L d$	L)	
$(\times 3 \text{ families})$		\overline{u}		\widetilde{u}_R^*		u_R^{\dagger}	
		\overline{d}		\widetilde{d}_R^*		d_R^{\dagger}	
sleptons, leptons		L		$(\tilde{\nu} \ \tilde{e}_L)$		(νe_L)	
$(\times 3 \text{ families})$		\overline{e}		\widetilde{e}_R^*		e_R^{\dagger}	
Higgs, higgsinos		H_u		$(H_{u}^{+} H_{u}^{0})$) 1)	$(\widetilde{H}_{u}^{+} \ \widetilde{H}_{u}^{0})$	
		H_{a}	Į	$(H^0_d \ H^d$)	$(\widetilde{H}^0_d \ \widetilde{H}$	$\binom{-}{d}$
	Names gluino, gluon winos, W bosons		spin $1/2$			spin 1	
			\widetilde{g}			g	
			\widetilde{W}^{\pm} \widetilde{W}^{0}		N	$W^{\pm} W^0$	
	bino, B boso	n	\widetilde{B}^0			B^0	

- SUSY muss gebrochen sein, da Superpartner ansonsten gleiche Masse wie SM-Teilchen hätten
- Verschiedene Modelle existieren f
 ür Brechungsmechanismus

Protonzerfall, R-Parität und ihre Folgen

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

 d_k d_k Ĩ١ ũ Vi U; di • ΔB und ΔL führt zu schnellem Protonzerfall, z.B. e^+ d \tilde{s}_R^* p⁺ 11 11 • Übliche Lösung: R-Parität $(R = (-1)^{3(B-L)+2s})$

Allgemeinste Wechselwirkungsterme ergeben auch Baryon-(B)und Leptonzahl (L) verletzende Kopplungen

5 universitätbonn

R-Paritätsverletzende SUSY

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

Vermeidung von $\Delta L \neq 0$ und $\Delta B \neq 0$ zur gleichen Zeit ausreichend, um Proton stabil zu halten \Rightarrow *R*-Paritätsverletzung

- Leichtestes supersymmetrisches Teilchen (LSP) nicht mehr stabil
 - ► LSP kann geladen sein
- Je nach RPV-Kopplung stark verschiedene Signaturen in Beschleunigerexperimenten
 - Langlebige, massive Teilchen
 - Exotische gebundene Zustände (R-Hadronen)
 - Prompte Zerfälle

Beispiel-Szenarien in *ℝ*_p mSUGRA

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

 mSUGRA (minimal Supergravity): SUSY-Brechungsmodell (reduziert Anzahl freier Parameter im MSSM von über 100 zu 5)

Beispiel-Szenarien in *ℝ*_p mSUGRA

Stau im LHC

Schastian Eleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selection

Entdeckungspotential

Abschätzung der Stau-Masse

universitätbonn

Zusammenfassung

m [GeV]

Backup

LSP in no-scale mSUGRA

Beispiel-Szenarien in R_p mSUGRA

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

universität**bo**

Zusammenfassung

Backup

- Bei *R*-Paritätserhaltung: Ausgeschlossen wg. Ladung
- ► Wirkungsquerschnitt am LHC $@\sqrt{s} = 7$ TeV: $\sigma = 0.28$ pb (Zum Vergleich: $\sigma_{t\bar{t}} = 160$ pb)

LSP in no-scale mSUGRA

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

- $\lambda_{121}(M_{GUT}) = 0.032$ ($L_1 L_2 \bar{E}_1$ Kopplung)
- ► Ergibt 4-Körperzerfall des $\tilde{\tau}$ -LSP: $\tilde{\tau}^{\pm}_{+} \rightarrow \tau^{\pm} \ell^{+} \ell^{\prime \pm} v$

Beispiel-Ereignis:

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

► Ergibt 4-Körperzerfall des $\tilde{\tau}$ -LSP: $\tilde{\tau}^{\pm}_{\pm} \rightarrow \tau^{\pm} \ell^{\mp} \ell^{\prime \pm} v$

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

► Ergibt 4-Körperzerfall des $\tilde{\tau}$ -LSP: $\tilde{\tau}^{\pm}_{-} \rightarrow \tau^{\pm} \ell^{-\pm} \ell'^{\pm} v$

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

► Ergibt 4-Körperzerfall des $\tilde{\tau}$ -LSP: $\tilde{\tau}^{\pm}_{\pm} \rightarrow \tau^{\pm} \ell^{\mp} \ell^{\prime \pm} v$

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

universitätbonr

Zusammenfassung

Backup

► Ergibt 4-Körperzerfall des $\tilde{\tau}$ -LSP: $\tilde{\tau}^{\pm}_{-} \rightarrow \tau^{\pm} \ell^{-\pm} \ell'^{\pm} v$

$\tilde{\tau}^ \mu^+$ $(\tilde{\chi}_1^0)^*$ $(\tilde{\mu}_R^-)^*$ λ_{121}

BC 1: Anzahl rekonstruierter Objekte pro Ereignis nach Standard-ATLAS-Objektselektion und Überlappentfernung;

Delphes-Detektorsimulation, $\sqrt{s} = 7$ TeV

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

universität**bonn**

Zusammenfassung

Backup

BC 1: Jet- und Lepton-Impulse skaliert auf $\int Ldt = 1$ fb⁻¹, $\sqrt{s} = 7$ TeV Delphes Simulation

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

Skalare Summe der Jet-Impulse $HT' = \sum_{j \in 1-4} p_T$

nach Ereignisselektion auf Leptonen:

BC 1: Ereignisselektion skaliert auf $\int Ldt = 1$ fb⁻¹, $\sqrt{s} = 7$ TeV Delphes Simulation

Stau im LHC	cut	Standard Modell	BC 1	S/\sqrt{B}
Sebastian	vor Schnitten	2 260 000	283	0.2
Fleischmann	$p_T(1$ st $\mu^{\pm}) >$ 40 GeV	320 000	142	0.3
0.6	$p_T(1 { m st} \ e^\pm) > 32 { m ~GeV}$	1 800	126	2.9
Ubersicht	$p_T(2nd e^{\pm}) > 7 \text{ GeV}$	185	114	8.4
RPV SUSY	$\sum p_T^{\ell} > 230 \text{ GeV}$	15.1	86	22.0
RPV	$\overline{HT'} > 200 \text{ GeV}$	6.1	60	24.3
szenarien	HT' > 300 GeV	3.4	57	30.7
Ereignis- Selektion	HT' > 400 GeV	$\lesssim 1$	53	

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

- Bei $\sqrt{s} = 7$ TeV ist es möglich (nahezu) untergrundfreie Signalstichproben bei hoher Signaleffizienz zu selektieren
- QCD-Beitrag vernachlässigbar
- Wichtigster Untergrund: $t\bar{t}$

Parameterscan um BC 1 Delphes Simulation, $\sqrt{s} = 7$ TeV, $\int L dt = 1$ fb⁻¹

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

Wirkungsquerschnitt

Selektionseffizienz

- hohe Signaleffizienz in weitem Parameterbereich
- Abnahme bei grossen tan(β) wg. geringer Massendifferenz zwischen *X*₁⁰ und *τ*

Entdeckungspotential am LHC Benötigte int. Luminosität für 5σ Entdeckung Delphes Simulation, $\sqrt{s} = 7$ TeV

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

13 universitätbonn Geschätzte benötigte int. Luminosität hängt stark von der Unsicherheit der Untergrundabschätzung ab

- Abschätzung systematischer Unsicherheiten erfolgt mit voller Detektorsimulation und Daten-gestützte Methoden
- ► Entdeckung bis Ende 2011 am LHC möglich (~ 1fb⁻¹, bis jetzt mehrere pb⁻¹)!

Untersuche Möglichkeit der Massenbestimmung Stau-Masse auf Generatorniveau in BC 1

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

Wie nach einer Entdeckung weitermachen?

- Kombinatorischer Untergrund, da zwei Stau-Zerfälle pro Ereignis: Welche Leptonen gehören zu welchem Zerfall?
 - ► (Statistische) Reduktion durch "opposite sign same sign"-Subtraktion

Abschätzung der Stau-Masse Kalibration und erwartete Auflösung

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

15

universitätbonn

- Benutze Punkte des Parameterscans
- Kalibrationskurve um τ̃ Masse aus Observablen zu bestimmen (10%-Wert eines Gauss-Fits)

Zusammenfassung

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

- ► R-Paritätsverletzung erlaubt weitere leichteste supersymmetrische Teilchen als übliches X̃⁰₁
- ► Verschiedene *R_p* Kopplungen ergeben unterschiedliche Phänomenologie
- BC 1 (τ̃₁[±] → τ[±]ℓ⁺ℓ'[±]ν) and BC 2 (τ̃₁[±] → qq) Szenarien sind "Extremfälle" von RPV-Modellen mit τ̃-LSP
- BC 1-Szenario einfach zu entdecken; saubere Signalselektion
 - Parameterscan um Benchmark-Punkt zeigt gute Signaleffizienz
 - Rekonstruktion des τ₁-Masse schwierig in BC 1, aber Massenabschätzung möglich mit LHC-Daten der ersten Jahre
 - Tau-Identifikation experimentell schwierig in RPV-SUSY (niederenergetische Taus und Überlappungen zwischen Tau-Jets und anderen Teilchen)

Decay spectrum of BC 1 Mass spectrum not to scale!

 W^{\mp}

Stau im LHC \tilde{g} (10 %)^b(15 %) a 50% Sebastian Eleischmann $\tilde{q}_{\scriptscriptstyle R}$ \tilde{q}_L b-Übersicht \tilde{b}_1 **RPV SUSY** (22 % (19%) RPV Szenarien Ereignis-Selektion **'44 %**) (62 (36 %) Entdeckungs-(31 potential q Abschätzung (100%) der Stau-Masse ñ $\tilde{\chi}^0_2$ Zusammenfassung (16) (17)(18 % (34 (18%) Backup \tilde{l}_L (67 🥦 (92 9 (33 % (92) (8 %) $\tilde{\chi}_1^0$ (100 $e^{*}v_{i}$ τ. l'e (50 (50.9)

t b

 $e \mu v_e \tau$

 $eev_{\mu}\tau$

Mass spectrum of BC 1

0

FIG. 9 (color online). Sparticle spectrum for no-scale mSUGRA parameter set: $M_{1/2} = 400$ GeV, $\tan \beta = 13$, $\operatorname{sgn}(\mu) = +1$, and $\Lambda = 0$.

Ĩ1

Branching rations in BC 1

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Stau-Iviasse

Zusammenfassung

Backup

	mass [GeV]	channel	BR	channel	BR
ř_1	148	$\mu^+ e^- \tau^- \bar{\nu}_e$	32.2%	$e^+e^-\tau^-\bar{\nu}_\mu$	32.1 %
-		$\mu^- e^+ \tau^- \nu_e$	17.9~%	$e^{-}e^{+}\tau^{-}\nu_{e}$	17.8%
\tilde{e}_R	161	$e^-\nu_e$	50%	$\mu^-\nu_e$	50~%
\tilde{u}_{R}^{-}	161	$\tilde{\tau}_{1}^{+}\mu^{-}\tau^{-}$	51.2%	$\tilde{\tau}_{1}^{-}\mu^{-}\tau^{+}$	48.7%
$\tilde{\chi}_{1}^{0}$	162	$\tilde{\tau}_1^+ \tau^-$	49.8%	$\tilde{\tau}_1^- \tau^+$	49.8%
Ž _T	261	$\tilde{\chi}_1^0 \nu_{\tau}$	67.2%	$W^+ \tilde{\tau}_1^-$	32.8%
$\tilde{\nu}_e (\tilde{\nu}_\mu)$	262	$\tilde{\chi}_1^0 \nu_e(\nu_\mu)$	92.4%	$e^{-}\mu^{+}(e^{+})$	7.5%
$\tilde{e}_L^-(\tilde{\mu}_L^-)$	274	$\tilde{\chi}_{1}^{0}e^{-}(\mu^{-})$	91.9%	$e^- \bar{\nu}_e(\bar{\nu}_\mu)$	8.1%
ř ₂	278	$\tilde{\chi}_{1}^{0}\tau^{-}$	63.0%	$\tilde{\tau}_1^- Z$	17.6%
		$h^0 \tilde{\tau}_1^-$	19.4%		
$\tilde{\chi}_{2}^{0}$	303	$\tilde{\nu}_{\tau} \bar{\nu}_{\tau}$	9.1%	$\tilde{\nu}_{\tau}^* \nu_{\tau}$	9.1%
		$\tilde{\tau}_1^- \tau^+$	9.1%	$\tilde{\tau}_1^+ \tau^-$	9.1%
		$\tilde{\nu}_e \bar{\nu}_e$	8.5%	$\tilde{\nu}_e^* \nu_e$	8.5%
		$\tilde{\nu}_{\mu}\bar{\nu}_{\mu}$	8.5%	$\tilde{\nu}^*_{\mu}\nu_{\mu}$	8.5%
		$\tilde{e}_L^- e^+$	4.5%	$\tilde{e}_L^+ e^-$	4.5%
		$\tilde{\mu}_L^- \mu^+$	4.5%	$\tilde{\mu}_L^+ \mu^-$	4.5%
		$\tilde{\tau}_2^- \tau^+$	3.1%	$\tilde{\tau}_2^+ \tau^-$	3.1%
		$\tilde{\chi}_1^0 h$	3.5%		
$\tilde{\chi}_1^-$	303	$\tilde{\nu}_{\tau}\tau^{-}$	20.2%	$\tilde{\nu}_{\mu}\mu^{-}$	18.6%
		$\tilde{\nu}_e e^-$	18.6%	$\tilde{\tau}_1^- \bar{\nu}_\tau$	16.7 %
		$\tilde{e}_L^- \bar{\nu}_e$	8.1%	$\tilde{\mu}_L^- \bar{\nu}_\mu$	8.1%
		$\tilde{\tau}_2 \bar{\nu}_{\tau}$	5.5%	$\tilde{\chi}_1^0 W^-$	4.0%
$\tilde{\chi}^0_3$	514	$\tilde{\chi}_1^- W^+$	28.9%	$\tilde{\chi}_1^+ W^-$	28.9%
		$\tilde{\chi}_{2}^{0}Z$	24.1%	$\tilde{\chi}_{1}^{0}Z$	10.2%
		$\tilde{\chi}_{1}^{0}h$	1.8%	$\tilde{\tau}_1^- \tau^+$	1.0%
		$\tilde{\tau}_1^+ \tau^-$	1.0%		
$\tilde{\chi}_{4}^{0}$	529	$\tilde{\chi}_1^- W^+$	26.5%	$\tilde{\chi}_1^+ W^-$	26.5%
		$\tilde{\chi}_{2}^{0}h$	17.5%	$\tilde{\chi}_{1}^{0}h$	7.1%
		$\tilde{\nu}_{\tau} \bar{\nu}_{\tau}$	1.8%	$\tilde{\nu}_{\tau}^* \nu_{\tau}$	1.8%
		$\tilde{\nu}_e \bar{\nu}_e$	1.8%	$\tilde{\nu}_e^* \nu_e$	1.8%
		$\tilde{\nu}_{\mu}\bar{\nu}_{\mu}$	1.8%	$\tilde{\nu}^*_{\mu}\nu_{\mu}$	1.8%
		$\tilde{\tau}_{-}^{-}\tau^{+}$	1.7%	$\tilde{\tau}_{\pi}^{+} \tau^{-}$	1.7%

	mass [GeV]	channel	BR	channel	BR
$\tilde{\chi}_2^-$	532	$\tilde{\chi}_2^0 W^-$	28.3%	$\tilde{\chi}_1^- Z$	25.3%
		$\tilde{\chi}_1^- h$	19.8%	$\tilde{\chi}_{1}^{0}W^{-}$	8.1%
		$\tilde{\tau}_2 \bar{\nu}_\tau$	4.4%	$\tilde{e}_L \bar{\nu}_e$	3.7%
		$\tilde{\mu}_L \bar{\nu}_\mu$	3.7%	$\tilde{\nu}_{\tau}^{*}\tau^{-}$	2.8%
		$\tilde{\nu}_{e}^{*}e^{-}$	1.6%	$\tilde{\nu}^*_{\mu}\mu^-$	1.6%
\tilde{t}_1	647	$\tilde{\chi}_1^+ b$	44.0%	$\tilde{\chi}_1^0 t$	23.7%
		$\tilde{\chi}_{2}^{+}b$	17.0%	$\tilde{\chi}_{2}^{0}t$	15.4%
\tilde{b}_1	780	$\tilde{\chi}_1^- t$	36.0%	$\tilde{\chi}_2^- t$	25.2%
		$\tilde{\chi}_{2}^{0}b$	22.0%	$W^-\tilde{t}_1$	12.0%
		$\tilde{\chi}_{1}^{0}b$	2.4%	$\tilde{\chi}_{3}^{0}b$	1.2%
\tilde{b}_2	816	$\tilde{\chi}_2^- t$	40.8%	$\tilde{t}_1 W^-$	15.2~%
		$\tilde{\chi}_{1}^{0}b$	12.7%	$\tilde{\chi}_1^- t$	10.0%
		$\tilde{\chi}_4^0 b$	8.6%	$\tilde{\chi}_{3}^{0}b$	6.7%
		$\tilde{\chi}_2^0 b$	6.0%		
\tilde{t}_2	835	$\tilde{\chi}_4^0 t$	23.5%	$\tilde{\chi}_1^+ b$	23.0%
		$\tilde{\chi}_{2}^{+}b$	15.0~%	$\tilde{t}_1 Z$	12.3%
		$\tilde{\chi}_{3}^{0}t$	9.6~%	$\tilde{\chi}_{2}^{0}t$	9.6~%
		ht	5.7%	$\tilde{\chi}_{1}^{0}t$	2.3~%
$\tilde{d}_R(\tilde{s}_R)$	855	$\tilde{\chi}_{1}^{0}$	99.4%		
$\tilde{u}_R (\tilde{c}_R)$	822	$\tilde{\chi}_1^0 u(c)$	99.4%		
$\tilde{u}_L(\tilde{c}_L)$	852	$\tilde{\chi}_1^+ d(s)$	64.6%	$\tilde{\chi}_{2}^{0}u(c)$	31.8%
		$\tilde{\chi}_{2}^{+}d(s)$	1.5%	$\tilde{\chi}_4^0 u(c)$	1.1%
		$\tilde{\chi}_1^0 u(c)$	1.0%		
$\tilde{d}_L(\tilde{s}_L)$	855	$\tilde{\chi}_1^- u(c)$	61.6%	$\tilde{\chi}_{2}^{0}d(s)$	31.8%
		$\tilde{\chi}_2^- u(c)$	3.8%	$\tilde{\chi}_1^0 d(s)$	1.8%
		$\tilde{\chi}_4^0 d(s)$	1.4%		
\tilde{g}	932	$\tilde{q}\bar{q}$	25.0%	$\tilde{q}^{*}q$	25.0%
		$\tilde{t}_1 \bar{t}$	9.5%	$\tilde{t}_1^* t$	9.5%
		$\tilde{b}_1 \bar{b}$	7.7%	$\tilde{b}_1^* b$	7.7%
		$\tilde{b}_2 \bar{b}$	5.2%	$\tilde{b}_2^* b$	5.2%

TABLE VII: SUSY mass spectrum and branching ratios (BRs) of the benchmark scenario BC1 [18]. Only only decays with a BR of at least 1% are shown. R-parity violating decays are bold face.

Selektion

Entdeckungspotential Abschätzung der Stau-Masse Zusammenfassung Backup

Event selection cuts and significances

Stau im LHC	cut	all SM	BC 1	S/\sqrt{B}	Zo
Schootion	before cuts	2 258 230 ±1 393	282.8±2.8	0.2	—
Fleischmann	$p_{T}(1 \text{st } \mu^{\pm}) > 40 \text{ GeV}$	$319~975~\pm~510$	$141.6{\pm}2.0$	0.3	—
	$p_{T}(1st e^{\pm}) > 32 \text{ GeV}$	$1\ 838\ \pm\ 44$	$125.9{\pm}1.9$	2.9	—
Übersicht	$p_T(2nd e^{\pm}) > 7 \text{ GeV}$	$184.9\pm$ 14.8	$113.7{\pm}1.8$	8.4	0.7
	$\sum p_T^\ell > 230 \text{ GeV}$	$15.1\pm$ 4.3	85.7±1.6	22.0	4.9
RPV SUST	HT' > 200 GeV	6.1± 2.3	60.3±1.3	24.3	6.4
RPV	HT' > 300 GeV	$3.4\pm$ 1.7	56.6±1.3	30.7	8.1
Szenarien	HT' > 400 GeV	$\lesssim 1$	52.6±1.2		
Ereignis-					

► Z₀ with 50% background uncertainty

cut	S/\sqrt{B}	Zo	Zplh	ZP	Zw	Z _{Bi}
before cuts	0.2	-	0.1	0.2	0.2	0.1
$p_{T}(1$ st $\mu^{\pm}) > 40$ GeV	0.3	-	0.2	0.2	0.3	0.2
$p_{T}(1st e^{\pm}) > 32 \text{ GeV}$	2.9	-	2.1	2.9	2.9	2.1
$p_{\tau}(2nd e^{\pm}) > 7 \text{ GeV}$	8.4	0.7	5.5	7.6	7.7	5.5
$\sum p_T^{\ell} > 230 \text{ GeV}$	22.0	4.9	8.8	14.5	14.5	8.8
HT' > 200 GeV	24.3	6.4	7.8	13.9	14.0	7.8
HT' > 300 GeV	30.7	8.1	7.9	15.2	15.2	8.1

BC 1: Cut Flow scaled to $\int Ldt = 1 \text{ fb}^{-1}$, $\sqrt{s} = 7 \text{ TeV}$ Delphes simulation

tau im LHC	cut	tŦ	all SM	BC 1	S/\sqrt{B}	Zo	
Sebastian	before cuts	155 500	2 260 000	283	0.2		
Fleischmann	$p_{T}(1$ st $\mu^{\pm}) > 40$ GeV	16 700	320 000	142	0.3		
	$p_{T}(1st e^{\pm}) > 32 \text{ GeV}$	1 500	1 800	126	2.9		
bersicht	p_{T} (2nd e^{\pm}) > 7 GeV	166	185	114	8.4	0.7	
	$\sum p_T^\ell > 230 \text{GeV}$	13.6	15.1	86	22.0	4.9	
PV SUSY	$HT^{\prime} > 200 \text{ GeV}$	5.1	6.1	60	24.3	6.4	
PV	HT' > 300 GeV	3.4	3.4	57	30.7	8.1	
zenarien	HT' > 400 GeV	$\lesssim 1$	$\lesssim 1$	53			

Ereignis-Selektion

R R S

- Entdeckungspotential
- Abschätzung der Stau-Masse
- Zusammenfassung

Backup

22 55 universitätbonn

- ► Even at √s = 7 TeV it is possible to select (nearly) background free samples at high signal efficiency
- QCD contribution assumed to be negligible

BC 1: Number of objects per event after ATLAS standard object selection and overlap removal; Delphes detector simulation, $\sqrt{s} = 7$ TeV

BC 2: Number of objects per event after ATLAS standard object selection and overlap removal; Delphes detector simulation, $\sqrt{s} = 7$ TeV

Tau-Rekonstruktion in BC 1 $\,$

Stau im LHC

Sebastian Fleischmann

Übersicht

RPV SUSY

RPV Szenarien

Ereignis-Selektion

Entdeckungspotential

Abschätzung der Stau-Masse

Zusammenfassung

Backup

 η - p_T Verteilung der Taus (MC, sichtbarer Impuls)

- sehr niederenergetische Taus
- Überlapp zwischen Taus und anderen Objekten aus der SUSY-Zerfallskaskade
- Tau-ID-Effizienz stark reduziert zu "einfachen" Ereignistopologien

