

Aufbau und Inbetriebnahme einer Prototypen-TPC mit hochgranularer Auslese für den ILC

Christoph Brezina - LCTPC Kollaboration

Herbstschule für Hochenergiephysik vom 2. bis zum 12. September 2008 in Maria Laach

GEFÖRDERT VOM

- ILC
- Detektorprinzip
- Aufbau des Testdetektors
 - Sensitives Volumen
 - Erste Signal-Verstärkungsstufe
 - Auslese
- Erste Messungen
 - Mit kosmischen Myonen
 - Mit 90Sr
- Neue Konzepte
 - Microchip Postprocessing

- e⁺-e⁻-Linearbeschleuniger
 - Wenig Untergrund
- Hochpräzisionsmessung
- Schwerpunktsenergie \sqrt{S} = 500GeV (Option 1TeV)
- Luminosität L = 10³⁴ cm⁻² sec⁻¹
- "Higgs Fabrik"

4

universität**bonr**

LHC Tracking vs. ILC Tracking

• ATLAS

- Schnelle Ereingnissfolge (25nsec)
- Relativ wenige Spurpunkte
- PP-Collider, daher großer
 Untergrund & große
 Detektorbelegung
- Pixellebensdauer ca. 5 Jahre

universitätbonn

5

LHC Tracking vs. ILC Tracking

• ATLAS

- Schnelle Ereingnissfolge (25nsec)
- Relativ wenige Spurpunkte
- PP-Collider, daher großer
 Untergrund & große
 Detektorbelegung
- Pixellebensdauer ca. 5 Jahre
- ILC Anforderungen
 - Geringe Eventrate
 (BunchX ca. alle 350nsec)
 - Geringer Untergrund
 - Min. 200 Punkte / Spur
 - Impulsauflösung δ(1/P_T)<2,4 * 10⁻⁴(GeV/c²)⁻¹
 - dE/dx < 5%
 - Materialbudget < $0,03X_0$
 - Strahlenhart

Detektorkonzept

GEFÖRDERT VOM

- Ein B-Feld parallel zum E-Feld reduziert die transversale Diffusion und ermöglicht die Bestimmung des Teilchenimpulses
- Mit entsprechender Auslese:

Digitale Blasenkammer

universität**bonn**

LC-TPC Prototyp

GEFÖRDERT VOM

- Feldkäfig entworfen an der RWTH Aachen
- 1% Strahlungslänge
- Durchmesser: 23cm
- Driftstrecke: 26cm
- Driftfeldgradient: <1kV/cm

Komplexes Gassystem

- Mischt bis zu 3 komponentige Gase dynamisch mit
 - < 1% Fehler an den einzelnen Flüssen

- Mischkammer ohne bewegliche Teile

- Steuerung des Gassystems durch einen embeddedPC mit AM186 CPU
 - Steuerung von Fluss und Druck durch hochauflösende ADC / DAC
 - Überwachung von Temperatur und Luftdruck
 - Fernsteuerbar via RS232 oder TCP/IP
 - 3.5" LCD

- Signal-Verstärkung im Gas durch GEMs (Gas Electron Multiplier – kupferbeschichtete Kaptonfolie)

 Elektronen driften durch ein starkes
 E-Feld in den GEM Löchern und erzeugen dort sekundäre
 Elektronen

- Signal-Verstärkung im Gas durch GEMs (Gas Electron Multiplier – kupferbeschichtete Kaptonfolie)

Elektronen driften durch ein starkes E-Feld in den GEM Löchern und erzeugen dort sekundäre Elektronen

Auslese – hoch integriert

- TimePix mit 256 x 256 Pixel
 Jeweils 55 x 55 µm²
- 4 verschiedene Modi je Pixel:
 - Deponierte Ladung
 - Zeit zwischen Treffer und Trigger
 - Anzahl der Treffer im Zeitfenster
 - Logische Information ob es zu einem Treffer kam
- Schwelle bei ~ 400 e⁻
- Takt < 100MHz entspricht Zeitauflösung 10nsec z-Auflösung Gasabhängig < 500µm
- Aktuell Pixel in Schachbrettanordnung zur Zeit oder Ladungsmessung konfiguriert

Auslese – konventionelle Pads

- Auslese mit konventionellen Pads um den ASIC herum
 - Einige 1000 Pads à 4 x 1 mm
 - direkter Vergleich zwischen den Ausleseverfahren

Ergebnisse aus den ersten Testläufen

GEFÖRDERT VOM

Kosmische Myonen

 Trigger aus Koinzidenz von zwei Szintilatoren

Kosmische Myonen

 Trigger aus Koinzidenz von zwei Szintilatoren

kurze Driftstrecke

lange Driftstrecke

Kosmische Myonen

Diffusion eines einzelnen Elektrons:

$$\sigma = D_T * \sqrt{x}$$

 Auflösung abgeleitet aus dem Abstand eines Punktes zu der ihm zugeordneten Spur

GEM – "Elektronen Tomographie"

- Homogene Signalbelegung der TPC durch Bestrahlung mit ⁹⁰Sr im hinteren Bereich
- Häufungspunkte im Raster der GEM Löcher sind klar zu erkennen

Distribution of Cluster Centres

Neue Konzepte

GEFÖRDERT VOM

 Limitierung der Auflösung durch die GEMs erfordert einen neuen Ansatz zur Gasverstärkung

- Perfektes Alignment
- keine ungenutzte Fläche

InGrid

Mechanisch relativ robust

 Problematisch ist die direkte N\u00e4he zwischen HV und dem Pixel-Chip

HV-Entladungen zerstören i.d.R. den Chip

 Zum Schutz vor Entladungen wird eine Isolationsschicht aufgebracht – SiProt (amorphes Silizium)

3µm a-Si

30µm a-Si

Zum Schutz vor Entladungen wird eine • Isolationsschicht aufgebracht - SiProt (amorphes Silizium)

Frame Browser Preview

_ _ ×

- Der ILC benötigt einen Detektor mit exzellenter Orts- und Impulsauflösung, eine TPC scheint hier ideal zu sein
- Eine Prototypen TPC mit großer Driftstrecke wurde aufgebaut und befindet sich im kontinuierlichen Ausbau
- Die hochgranulare Auslese von TPCs auf Basis von Pixelchips ist viel versprechend
- Die Auflösung ist durch die Gasverstärkung eingeschränkt
 - Die InGrid-Technologie bleibt zu erproben
- Agenda:
 - Integration mehrerer Pixelchips zur Auslese

GEFÖRDERT VOM

Leistungsfähigkeit einer TPC

 Nachweis verschiedener Bosonen bereits im Testdetektor erfolgreich!!

GEFÖRDERT VOM

-20

-40

Chip Position

y-position scintillator 2 / mm

Strahlzeit an ELSA

Strahlzeit an ELSA

- Ortsauflösung in Abhängigkeit der Strahlneigung
- Variation der Ortsauflösung erklärbar durch die Geometrie der GEMs

InGrid

