

Bundesministerium für Bildung und Forschung

- attempted overview of German exclusive studies

<u>Klaus Desch ¹, Wolfgang Ehrenfeld ², Johannes Haller ³,</u> <u>Sebastian Fleischmann ¹, Dörthe Ludwig ³,</u> <u>Till Nattermann ¹, Peter Wienemann ¹,</u> <u>Carolin Zendler ¹</u> <u>2 DESY</u>

2 DESY 3 Uni Hamburg

ATLAS-D 18.09.08

- Introduction: different SUSY models considered in this talk
- Discovery potential with taus in GMSB
- $\tau\tau$ invariant mass spectra in RPC scenarios:
 - Endpoint determination with "low" integrated luminosity (~1 fb⁻¹)
 - Endpoint and polarization measurement with "high" integrated luminosity (several 10 fb⁻¹)
- Taus in mSUGRA-like RPV scenarios

SUSY models

GMSB parameter scan

D. Ludwig

ditau mass spectrum

$$\approx m(\tilde{\tau}_{1,2}) \text{ from } m_{\tau\tau} \text{ spectra:} \qquad m_{\tau\tau}^{max} = \sqrt{\frac{(m(\tilde{\chi}_{2}^{0})^{2} - m(\tilde{\tau}_{1})^{2}) \cdot (m(\tilde{\tau}_{1})^{2} - m(\tilde{\chi}_{1}^{0})^{2})}{(m(\tilde{\tau}_{1})^{2})}}$$

$$\approx \text{ Sum of tau polarizations -> stau mixing angle} \qquad \qquad \texttt{SU3: } m(\tau_{2}) > m(\chi_{1}^{0})$$

$$\qquad \texttt{GMSB6: } m(\tau_{2}) \approx m(\chi_{2}^{0}) > m(\chi_{1}^{0})$$

$$\qquad \qquad \texttt{only decays via } \tau_{1} \text{ relevant}$$

invariant mass at 1fb⁻¹

• <u>endpoint determination with inflection point method</u>: [ATL-PHYS-INT-2008-008]calibration made with Atlfast (SU3-like spectra): $m_{\tau\tau}^{IP} = (0.47 \pm 0.02) m_{\tau\tau}^{max} + (15 \pm 2) GeV$

trigger issues

C. Zendler

polarization effects

T. Nattermann

single pion decay:

shape also depends on tau polarization, inflection point shifted

- angular momentum / momentum conservation
 + belicity of peutrino
- + helicity of neutrino
- pion momentum direction determined by tau charge and helicity
- pion boosted (anti)parallel to tau momentum direction

2dim calibration

T. Nattermann

How much could be gained by such a separation?

- take reconstructed taus + information about decay mode from truth-match
- fake taus: probability according to branching fraction
- 6 separate calibrations:

T. Nattermann

0

-2

RPV – tau ID challenges

S. Fleischmann

RPV vs SM

Number of leptons:

(preselection cut: MET > 65 GeV)

- good discriminant against most important standard model backgrounds (note: no overlap removal in these plots)
- no sophisticated selection yet, but BC1 might be interesting for first data (i.e. easy to discover)

- Tau signatures are important for SUSY:
 - enhanced production -> great discovery potential
 - taus yield valuable information for SUSY parameter determination
- Cross-check of methods in different SUSY scenarios is crucial to test model independence
- Outstanding issues:
 - pile-up not taken into account yet
 - difference in tau reconstruction efficiency for different tau decay modes could lead to bias
- further RPV studies:
 - increase BG statistics
 - develop selection cuts, study systematics (also with 10 TeV data)

backup

GMSB slepton peak

Visible part of the invariant mass of 2τ (Generator Level) Detector level – taus with truth match Entries 35 other ≥³⁵⁰ 0,300 $\widetilde{\chi}^{0}_{\partial} \\ \widetilde{\chi}^{0}_{I} \\ \widetilde{l}_{R}$ 30 sleptons 25 250 ئ¹ 200 # 200 20 other sparticles 15 taus with truth match 10 (no OLR) 150 5 100 0<u></u>1 50 100 150 200 250 300 M_{ττ} [GeV] 50 "sleptons": 3-body decay 250 300 50 200 100 50 inv mass (vis τ decays, vis τ decays) [GeV] $\tilde{\chi}_1^0$ $\tilde{\tau}_1$ \tilde{G}

D. Ludwig

MissingEt

mass spectrum II

SU1: 70 +- 6.5 (theory: 78)

trigger issues

	efficiency			#events						
	ohne cuts m	et/jet cuts Nt	tau>=2	ohne cuts m	et/jet cuts Nti	au>=2				
j160	0.82	0.99	1.00	73560	22782	367	HLT			
j200	0.83	0.99	0.99	73711	22682	365				
j400	0.27	0.40	0.39	24276	9159	144	SUSY			
2j120	0.64	0.80	0.78	56881	18450	287	HLT			
3j 65	0.53	0.81	0.84	47090	18566	308	HLT			
3j1 65	0.08	0.16	0.14	6820	3621	50	SUSY			Sheet3
4j 55	0.31	0.57	0.68	27417	13111	251	HLT		prescele 1	
4j110	0.06	0.12	0.14	4952	2787	50	SUSY	100(31)	100(32)	100(33)
jetsHLT*	0.88	1.00	1.00	78644	22910	368		10 (51)	10 (52)	10 (33)
j42_xe50	0.90	1.00	1.00	80580	22821	367		te650	te800	te900
j70 xe70	0.85	0.99	0.99	75907	22706	364	SUSY	xe70.xe80	xe70.xe80	xe90
xe80	0.83	0.99	0.98	73982	22603	362		i120. i200	i200	i300
te650	0.51	0.80	0.89	45817	18339	328		,	3i50.3i70	3i100
tau20i_j70	0.44	0.51	0.96	39511	11590	354		4i23	4i35.4i50	4i50
tau20i_j120	0.41	0.51	0.96	36853	11588	354		tau20i 4i23	tau25i 4i23	tau35i 4i23
tau20i_2j70	0.40	0.49	0.95	35361	11267	348		tau100	tau150	tau150
tau20i_3j23	0.42	0.51	0.96	37668	11586	354		tau20i xe30		
tau20i_xe30	0.44	0.50	0.96	39439	11571	354		tau35i xe40	tau35i xe40	tau45i xe40
tau25i_j70	0.40	0.46	0.92	35503	10459	339		tau45 xe40	_	_
tau25i_j120	0.37	0.46	0.92	33127	10457	339		2tau25i	2tau35i	2tau45i
tau25i_xe40	0.39	0.45	0.92	34515	10422	339	HLT	2tau35i		
tau45i_xe40	0.26	0.32	0.72	23305	7221	266				
								tau20i i120		
xe90	0.81	0.98	0.98	72062	22494	359		tau20i_3i23		
tau150	0.17	0.20	0.27	15153	4684	101		tau25i j70		
tau35i_4j23	0.26	0.37	0.82	23373	8570	301		tau20i j70		
3j100	0.39	0.64	0.61	34544	14672	225		tau20i_2i70		
j300	0.57	0.81	0.78	51248	18600	287		,	I	

* jetsHLT = j160 || 2j120 || 3j65 || 4j55

polarization effects

angular momentum /

- momentum conservation
- + helicity of neutrino
 - pion momentum direction determined by tau charge and helicity
- pion boosted (anti)parallel to tau momentum direction
- shape of mass spectrum depends on tau polarization
 infloction point shifted
- inflection point shifted

 $\star \rho/a_1$: same (opp.) momentum direction as π for long. (transv.) meson

- ullet ho: longitudinal share bigger than transversal
- a₁: longitunal and transversal share equal -> mass spectrum not shifted

• rho/a1 difference:

detector effects: ATLFAST (fast simulation)

- shape deformed by low tau reconstruction efficiency at low p₁
- reduced shape information,
 rising edge determined by τ ID

- shift in trailing edge affects inflection point but not endpoint
- additional uncertainty on calibration showed before
- → add. error on endpoint measurement: ± 3.5^(pol) GeV

- to measure both endpoint and polarization: disentangle mass and polarization effects
- search traits with max. different sensitivity to mass / polarization:

traits for calibration: maximum plus position of 0.1*maximum

separation via 1p/3p

separation of 1prong and 3prong decays:

3p dominated by a_1 (~2/3) and "others" (=not ρ,π,a_1) -> indepent of polarization

but: only 5% of double-hadronic decays are double-3prong

- + some a₁ also decay 1prong
- on detector level and after selection cuts, not enough double-3prongs for endpoint determination

use invariant mass of single tau decay products:

ATLAS-D 18.09.08

inv mass dec prod

universität**bonr**

 All possible fully-renormalizable gauge invariant terms: Introduce Baryon number (B) or Lepton number (L) violating couplings

$$\mathbf{W}_{R_{P}} = \epsilon_{ab} \left[\frac{1}{2} \underbrace{\frac{\lambda_{ijk} L_{i}^{a} L_{j}^{b} \bar{E}_{k}}{\text{violates } L} + \underbrace{\frac{\lambda'_{ijk} L_{i}^{a} Q_{j}^{bx} \bar{D}_{kx}}{\text{violates } L}}_{\text{violates } L} \right]^{\substack{x, y, z: \text{SU(3) gauge ind.}\\a, b: \text{SU(2) gauge ind.}}} + \frac{1}{2} \epsilon_{xyz} \underbrace{\frac{\lambda''_{ijk} \bar{U}_{i}^{x} \bar{D}_{j}^{y} \bar{D}_{k}^{z}}{\text{violates } B} - \epsilon_{ab}}_{\text{violates } L} \underbrace{\frac{\kappa^{i} L_{i}^{a} H_{u}^{b}}{\text{violates } L}}_{\text{violates } L}$$

Only B or L violating couplings allowed to prevent proton decay

i i k[•] deneration ind

BC1 ($\tilde{\tau} \rightarrow 11\tau v$) **Event variables**:

Missing transverse energy

$$\int \mathcal{L} \approx 3.9 \, \text{fb}^{-1} \xrightarrow{\text{--BC 1}} W \to \mu \nu 2p \ (6414) \\ -W \to \mu \nu 3p \ (6415) \\ -\text{--ttbar} \ (T1 - 5200) \\ -J4 \ (5013) \\ -J5 \ (5014) \\ \end{bmatrix} \text{SU}_{\text{with}}$$

SUSY WG samples with EF cut MET > 50 GeV

miss E_T [GeV]

- Introduce "artificial" cut on missing transverse energy (MET > 65 GeV) in the following plots to be able to use SUSY WG background samples
 - ${\, \bullet \,}$ Especially with first data it may be appealing to avoid an $E_{_{T}}miss$ cut

ATLAS SUSY WG (RPV/long lived sub-group) – 2008-09-11: RPV mSUGRA with stau-LSP Sebastian Fleischmann – Uni Bonn

RPV mSUGRA Benchmark Points:

BC1

ATLAS SUSY WG (RPV/long lived sub-group) - 2008-09-11: RPV mSUGRA with stau-LSP

Sebastian Fleischmann – Uni Bonn

RPV mSUGRA Benchmark Points:

ATLAS SUSY WG (RPV/long lived sub-group) - 2008-09-11: RPV mSUGRA with stau-LSP

Sebastian Fleischmann – Uni Bonn

RPV mSUGRA Benchmark Points:

ATLAS SUSY WG (RPV/long lived sub-group) – 2008-09-11: RPV mSUGRA with stau-LSP

Sebastian Fleischmann – Uni Bonn

Detectorsignal for RPV mSUGRA events (BC2)

Energy deposition in EM calorimeter

