au- au-edge and au-polarisation effects in $ilde{\chi}_2^0$ decays

Carolin Zendler, Till Nattermann

Physikalisches Institut Group Prof. Desch

ATLAS-D Meeting 20./21. September 2007

- 4 回 ト 4 ヨ ト 4 ヨ ト

 $\label{eq:tau} \begin{aligned} \tau &- \tau \text{-edge} \\ \text{effects of } \tau \text{-polarisation} \end{aligned}$

event selection endpoint determination

motivation

•
$$m_{\ell\ell}^2 = \left(p_{\ell_n} + p_{\ell_f}\right)^2$$
-distribution

• endpoint
$$(m_{\ell\ell}^2)_{\max} = m_{\tilde{\chi}_2^0}^2 \left(1 - \frac{m_{\tilde{\ell}}^2}{m_{\tilde{\chi}_2^0}^2}\right) \left(1 - \frac{m_{\tilde{\chi}_1^1}^2}{m_{\tilde{\ell}}^2}\right)$$

• known neutralino masses $ightarrow m_{ ilde{\ell}}$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

• information about $\tilde{\tau}$ -mass

 $\tilde{\chi}_2^0 \to \tilde{\tau}^{\pm} \tau^{\mp} \to \tau^{\pm} \tau^{\mp} \tilde{\chi}_1^0$

- $BR(\tilde{\chi}_2^0 \to \tau^{\pm} \tau^{\mp} \tilde{\chi}_1^0) \approx 10 \ BR(\tilde{\chi}_2^0 \to e^{\pm} e^{\mp} (\mu^{\pm} \mu^{\mp}) \tilde{\chi}_1^0)$ for SU3
- $BR(\tilde{\chi}_2^0 \to \tau^{\pm} \tau^{\mp} \tilde{\chi}_1^0) \approx 4 BR(\tilde{\chi}_2^0 \to e^{\pm} e^{\mp} (\mu^{\pm} \mu^{\mp}) \tilde{\chi}_1^0)$ for SU1
- information about τ_n and τ_f polarisation

 $\tau - \tau$ -edge effects of τ -polarisation event selection endpoint determination

event selection - SM & SUSY background

Carolin Zendler, Till Nattermann au - au-edge and au-polarisation effects in $ilde{\chi}_2^0$ decays

event selection endpoint determination

$\tau\tau$ -mass spectra

• 1 000 000 SU3 events $\hat{=}$ 51.7 fb⁻¹

- ν not detected
- τ reconstruction

• $m_{ au au} > (m_{ au au})_{
m max} pprox$ 99 GeV \Rightarrow fakes and combinational background

イロン 不同と 不同と 不同と

- 12

 $\tau - \tau \text{-edge}$ effects of τ -polarisation

event selection endpoint determination

$[\tau^+\tau^-] - [\tau^\pm \tau^\pm]$ -distribution

- $[\tau^{-}\tau^{+}]-[\tau^{\pm}\tau^{\pm}]$ without combinational background of uncorrelated τ s
- $\tilde{\chi}_4^0 \to \tilde{\chi}_1^{\pm} \tau^{\mp} \nu_{\tau} \to \tilde{\tau}^{\pm} \nu_{\tau} \tau^{\mp} \nu_{\tau} \to \tau^{\pm} \tilde{\chi}_1^0 \nu_{\tau} \tau^{\mp} \nu_{\tau}$

Carolin Zendler, Till Nattermann

 $\tau - \tau$ -edge and τ -polarisation effects in $\tilde{\chi}_2^0$ decays

 $\label{eq:tau-r-edge} \tau - \tau \text{-edge} \\ \text{effects of } \tau \text{-polarisation}$

event selection endpoint determination

inflectionpoint - endpoint

- 14 combinations of $m_{ ilde{ au}},\ m_{ ilde{\chi}_2^0},\ m_{ ilde{\chi}_1^0}$
- 14 different endpoints and inflection points
- measured inflection point \Rightarrow endpoint

^amodified adoption from CMS NOTE 2006/096 (2006)

 $\begin{array}{c} {\rm single} \ \tau {\rm -decays} \\ \tau^{\pm} \tau^{\mp} {\rm -systems} \\ {\rm vector} \ {\rm mesons} \\ {\rm results} \ {\rm and} \ {\rm challenges} \end{array}$

single $\tau \rightarrow \nu_{\tau} \pi$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

 $\begin{array}{c} \text{single } \tau\text{-decays} \\ \tau^{\pm}\tau^{\mp}\text{-systems} \\ \text{vector mesons} \\ \text{results and challenges} \end{array}$

single $\tau \rightarrow \nu_{\tau} \pi$ decays

• angular momentum conservation

- handness of neutrino
- momentum conservation

 $\begin{array}{c} {\rm single} \ \tau {\rm -decays} \\ \tau^{\pm} \tau^{\mp} {\rm -systems} \\ {\rm vector} \ {\rm mesons} \\ {\rm results} \ {\rm and} \ {\rm challenges} \end{array}$

single $\tau \rightarrow \nu_{\tau} \pi$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

 $\begin{array}{c} \text{single } \tau\text{-decays} \\ \tau^{\pm}\tau^{\mp}\text{-systems} \\ \text{vector mesons} \\ \text{results and challenges} \end{array}$

single $\tau \rightarrow \nu_{\tau} \pi$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

single $\tau \rightarrow \nu_{\tau} \pi$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

reult

 π momentum direction in $\tau\text{-restframe}$ specified by τ charge and helicity (chirality)

・ロト ・回ト ・ヨト ・ヨト

3

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

single $au \to \overline{ u_{ au} \ \pi}$ decays

- spin-quantisation $axis(\vec{p}_{\tau})_{LAB}$ -direction
- LORENTZ-boost τ -restframe \rightarrow LAB-system
- low and high energy πs

イロト イヨト イヨト イヨト

æ

 $\tau - \tau \text{-edge}$ effects of $\tau \text{-polarisation}$

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

au au mass spectra

• $\tau \to \pi \nu_{\tau}$

•
$$m_{\pi\pi}^2 = (p_{\pi_n} + p_{\pi_f})^2$$

- $m_{\pi\pi}$ sensitive to polarisation
- allows distinction between RL = LR, LL and RR (chiralitys)
- but: relation endpoint to inflection point differ

Carolin Zendler, Till Nattermann au - au-edge and au-polarisation effects in $ilde{\chi}_2^0$ decays

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

spectra of generated $\tau \rightarrow \nu_{\tau} \pi$ -decays

- RR: $(m_{\pi\pi})_{max} =$ 98.12 ± 0.562 GeV
- *LL*: $(m_{\pi\pi})_{max} = 101.3 \pm 1.14$ GeV
- $RL = LR: (m_{\pi\pi})_{\max} =$ 99.97 ± 0.95 GeV
- no detector effects => < ≡> < ≡> <> <

Carolin Zendler, Till Nattermann

 $\tau - \tau \text{-edge}$ effects of τ -polarisation

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenge

ATLFAST sample including detector effects

- 1 000 000 events for RR, LL and RL = LR
- cuts: $P_{\mathrm{T,miss}} > 200 \, GeV \ P_{\mathrm{T,1.Jet}} > 200 \, GeV, \ P_{\mathrm{T,4.Jet}} > 50 \, GeV$
- opposite sign τ s same sign τ s
- decay dominated by vector mesons (ρ, a₁)

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

single $\tau \rightarrow \nu_{\tau} \rho(a_1)$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

single $\tau \rightarrow \nu_{\tau} \rho(a_1)$ decays

angular momentum conservation

- handness of neutrino
- momentum conservation

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

single $\tau \rightarrow \nu_{\tau} \rho(a_1)$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

・ロン ・回 と ・ ヨ と ・ ヨ と

3

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

single $\tau \rightarrow \nu_{\tau} \rho(a_1)$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

 $\tau - \tau \text{-edge}$ effects of τ -polarisation

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

single $\tau \rightarrow \nu_{\tau} \rho(a_1)$ decays

- angular momentum conservation
- handness of neutrino
- momentum conservation

result:

 $\rho({\it a_1})$ has same (opposite) momentum direction as π for longitudinal (transversal) polarisation

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons

results and challenges

vectormeson spectra of generated events

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons

$au ightarrow {\it a}_1, ho \; {\sf decays}$

イロン イヨン イヨン イヨン

E

- $[a_1a_1]_{LL} \approx [a_1a_1]_{LR=RL}$
- $[\rho\rho]_{LL} < [\rho\rho]_{LR=RL}$
- more longitudinal hos
- a_1 spectra independent of polarisation, select 3-prong, $BR(\tau \rightarrow \nu_{\tau} a_1)_{3-\text{prong}} \approx 9,5\%$

 $\tau - \tau \text{-edge}$ effects of $\tau \text{-polarisation}$

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

polarisation and inflection point

 $\begin{array}{l} \textit{RR: } x_{\rm IP} = 67.6 \ \text{GeV} \\ \textit{LL: } x_{\rm IP} = 60.9 \ \text{GeV} \\ \textit{RL} = \textit{LR: } x_{\rm IP} = 64.7 \ \text{GeV} \\ \textit{systematical error} \approx 7 \ \text{GeV} \end{array}$

<ロ> <同> <同> <同> < 同>

< E

 $\tau - \tau \text{-edge}$ effects of $\tau \text{-polarisation}$

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

challenges and long term objective

- include polarisation to endpoint determination
- develop strategies polarisation of τ_n and τ_f
 - fit with more parameters
 - use intrinsic shape of spectra
- polarisation depends on:
 - **1** $\tilde{\tau}$ -mixing angle
 - 2 mixing properties of neutralinos

single τ -decays $\tau^{\pm}\tau^{\mp}$ -systems vector mesons results and challenges

shape of spectra

²modified proposal from CMS NOTE 2006/096 (2006) 🖅

Carolin Zendler, Till Nattermann

 $\tau - \tau$ -edge and τ -polarisation effects in $\tilde{\chi}_2^0$ decays