
Optimisation of an Adversarial Neural Network
in the 𝒕𝑾 Dilepton Channel at ATLAS

Nicolas Erasmus Boeing

Masterarbeit in Physik
angefertigt im Physikalischen Institut

vorgelegt der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität

Bonn

Nov 2020

I hereby declare that this thesis was formulated by myself and that no sources or tools other than those
cited were used.

Bonn, .
Date Signature

1. Gutachter: Prof. Dr. Ian C. Brock
2. Gutachter: Prof. Dr. Florian Bernlochner

17.11.2020

Acknowledgements

I am very grateful to Prof. Ian C. Brock, for giving me the opportunity of working on this topic and
always being supportive. I’d like to thank Christian for always being helpful, even when things didn’t
go as planned. A special thanks also go out to each and every member of the research group for the
interesting chats, valuable advice and, when we still could, the fun board game evenings.

I can’t thank my parents enough for always supporting me on my studies.
Lastly, I am indebted to Frank for helping me keep my sanity in the rather uncertain times that most

of this work was done in.

iii

Contents

1 Introduction 1

2 Experimental and Theoretical Background 3
2.1 The Standard Model of particle physics . 3

2.1.1 Matter particles . 3
2.1.2 Forces and gauge bosons . 4
2.1.3 The Higgs boson . 5

2.2 The Large Hadron Collider and the ATLAS detector 5
2.2.1 The Large Hadron Collider . 5
2.2.2 The ATLAS detector . 6

2.3 Top quark physics . 12
2.3.1 The top quark . 12
2.3.2 Top quark production at the LHC . 12
2.3.3 The 𝑡𝑊 dilepton channel . 13

2.4 Monte Carlo simulations . 15
2.4.1 Systematic uncertainties . 16

3 Machine Learning with Neural Networks 19
3.1 Introduction to machine learning . 19
3.2 Neural networks . 20

3.2.1 The perceptron model . 20
3.2.2 Training the network . 22
3.2.3 Overfitting and regularisation . 25
3.2.4 Performance metrics . 27

3.3 Adversarial neural networks . 28
3.3.1 Generative Adversarial Networks . 28
3.3.2 Adversarial neural network as a pivot . 29

4 Adversarial Neural Network in the 𝒕𝑾 Dilepton Channel 31
4.1 Motivation . 31
4.2 Tensorflow & Keras . 33

4.2.1 Network setup . 33
4.2.2 Network training . 34

4.3 Monte Carlo samples . 34
4.4 Variable selection . 35
4.5 Performance metrics . 35

v

4.6 Hyperparameter optimisation . 36
4.6.1 Random seed . 38
4.6.2 Nodes & layers . 38
4.6.3 Initialisers . 38
4.6.4 Optimiser . 39
4.6.5 Regularisation . 40
4.6.6 Lambda . 43

5 Runtime Optimisation 45
5.1 Introduction to CPUs and GPUs . 45
5.2 Performance metrics & setup . 46

5.2.1 Batch size . 46
5.3 Performance on CPU . 46
5.4 Performance on GPU . 48
5.5 Miscellaneous improvements . 48
5.6 Comparison with standard classifier network . 49

6 Results 51
6.1 ANN training with DR/DS systematic in the 2j2b region 51

6.1.1 Systematics impact . 51
6.2 ANN training with DR/DS systematic in the 1j1b region 53

6.2.1 Systematics impact . 54
6.3 ANN training with PS systematic in the 1j1b region 54

6.3.1 Systematics impact . 54

7 Conclusion 57

Bibliography 59

A Datasets 65

List of Figures 67

List of Tables 69

vi

CHAPTER 1

Introduction

Humans have been striving to understand the world around them for thousands of years. The first
example of physics, the study of the matter and energy that makes up everything around us, stem
from ancient Greece around 2 400 years ago, when the philosopher Thales of Miletus proclaimed that
every event had natural causes and could be explained [1]. Since then, physical sciences have been
progressing steadily, going through many breakthroughs such as the invention of classical mechanics
by Isaac Newton [2] or the formulation of the electromagnetic theory by James Clerk Maxwell [3].

The latest great breakthrough has been the development of quantum mechanics and subsequently
the Standard Model of particle physics, describing the fundamental building blocks of matter and how
they interact at the smallest scales and highest energies [4]. This branch of physics has remained a
topic of active fundamental research ever since, with steadily improving tools and techniques.

In order to study new particles and their interactions at these scales they have to be accelerated
to high energies, collided and the remnants of these interactions measured. This is done using
large colliders that smash particles together at near light speeds, with the interaction products being
measured by sophisticated detectors that can grow to the size of large buildings.

This research generates gigantic amounts of data that has to be filtered and analysed with ever more
complex data analysis techniques. A recent, major advancement has been the development of machine
learning methods such as neural networks with their unrivaled ability to learn even the most subtle
patterns in complex data. This work will focus on adversarial neural networks, a recently invented
method that promises to reduce impact of systematic uncertainties, unknown variations in data that
are not statistical in nature.

First, some necessary experimental and theoretical basics are introduced, such as the Standard Model
of particle physics, the Large Hadron Collider and ATLAS detector, and the 𝑡𝑊 dilepton decay channel
that is the focus of this work. Next, the concept of machine learning is described and the methods of
neural networks and adversarial neural networks introduced. Then, the particular network setup used
in this thesis is outlined and the optimisation process detailed, followed by describing how its runtime
could be heavily improved. Lastly, the results of using this adversarial network are presented and its
viability for physics analyses discussed, as well as some potential future improvements outlined.

1

CHAPTER 2

Experimental and Theoretical Background

In this chapter some necessary experimental and theoretical basics are introduced. First, Section 2.1
briefly introduces the Standard Model of particle physics with its elementary particles and forces.
This work is conducted using simulations based on the Large Hadron Collider (LHC) and ATLAS
detector, so both machines are described in Section 2.2. Section 2.3 will go into more detail about the
particular physics process studied in this analysis. Lastly, a quick introduction into how these detector
events are simulated is given in Section 2.4.

2.1 The Standard Model of particle physics

Basis to all of modern particle physics is the so-called Standard Model, which was developed in the
1970s as a result of the rapid advancements in theoretical particle physics in the decades before [4].
It is a gauge theory describing all known fundamental particles and the interactions between them.
While the Standard Model has limitations, such as not being able to explain phenomena like gravity
and neutrino oscillations, it is in itself consistent and has been able to provide many experimental
predictions since its conception. An overview of the Standard Model is shown in Figure 2.1.

2.1.1 Matter particles

There are a total of 12 matter particles and their respective antiparticles, particles with the same mass
but reversed quantum numbers, in the Standard Model. They consist of 6 quarks and 6 leptons which
can both be additionally grouped into three generations of pairs. Particles of higher generation retain
the same quantum numbers but have higher masses, making them unstable. Due to this, all common
matter in the universe is made up of particles in the first generation. These fundamental particles can
interact using the electromagnetic, strong and weak forces, depending on their electric, colour and
weak charges. While they can also interact with gravity, it is many orders of magnitude weaker than
even the weak force at subatomic ranges, so it can be neglected.

Quarks are the only matter particles that carry a colour charge, enabling them to interact using the
strong force. They are grouped into up-type quarks with a charge of 2/3, consisting of up, charm and
top quark, and down-type quarks that have a charge of −1/3 and consist of down, strange and bottom

3

Chapter 2 Experimental and Theoretical Background

Figure 2.1: Overview of the Standard Model of particle physics [5]

quarks [6]. Quarks can (with the exception of the top quark) form bound states, called hadrons. The
only stable hadrons are the proton, made up of two up and one down quark, and neutron, comprising
two down and one up quark. Together they make up the overwhelming amount of mass in ordinary
matter.

Leptons consist of three particles, each with a corresponding neutrino. The electron, muon and tau
lepton have an electric charge of -1, allowing them to interact electromagnetically. The electron, muon
and tau neutrinos don’t have electric or colour charge, so they can only interact weakly. This means
that they can pass through large amounts of matter without interacting, making them very difficult to
detect.

2.1.2 Forces and gauge bosons

There are a total of four fundamental forces, three of which are described by the Standard Model.
They are mediated by exchange of characteristic bosons, particles with integer spin.

The strong force, described by the 𝑆𝑈 (3) symmetry group, is responsible for the formation of
bound states between quarks and is much stronger than other forces at close ranges. It is mediated
by 8 massless flavoured gluons, which only couple to particles that have a colour charge. Because
they themselves have a colour charge, gluons can self-interact, giving rise to colour confinement. It
prevents quarks and gluons from existing freely, instead clumping into colour-neutral hadrons.

The most common force in everyday life is the electromagnetic force. At a range of 1 fm it is

4

2.2 The Large Hadron Collider and the ATLAS detector

approximately 137 times weaker than the strong force. However because it can act at long ranges, it is
the cause of nearly all phenomena outside of nuclei. Most importantly, it allows electrons to bind with
nuclei, forming atoms and molecules. The mediator of the electromagnetic force is the neutral photon,
coupling to all particles with an electric charge.

The weak force plays an important role in nuclear 𝛽-decay and enables quarks to change flavour. It
is 10−8 times weaker than the strong force and is mediated by the neutral 𝑍0 boson and charged𝑊+ and
𝑊

− bosons. Both weak bosons are massive with a mass of 91 MeV/𝑐2 and 80 MeV/𝑐2 respectively [7]
and have a spin of 1. At high energies electromagnetic and weak forces can be described as a single
electroweak interaction.

The Standard Model currently does not explain gravity and is incompatible Einstein’s theory of
General Relativity, the most successful theory of gravity. However, at a range of 1 fm, gravity is 10−37

weaker than the strong force and as such can be disregarded.

2.1.3 The Higgs boson

In the Standard Model, the Higgs field gives elementary particles their mass due to spontaneous
symmetry breaking. The Higgs boson is an excitation of the Higgs field with spin 0 and a mass of
125 GeV [7]. It was first observed in 2012 at the LHC, almost 50 years after being theorised by Peter
Higgs [8].

2.2 The Large Hadron Collider and the ATLAS detector

As mentioned previously, only particles of the first generation, namely up and down quarks (bound
in protons and neutrons) as well as the electron, can be readily observed in everyday life. To create
any other particles and study them, colliders are needed to accelerate particles to high speeds and
let them interact. Additionally, as some processes are extremely rare, a very high rate of collisions
is needed to precisely measure them. In order to compare the data gathered to the Standard Model
predictions, events are simulated using Monte Carlo methods.

This thesis works with simulations of data taken by the ATLAS detector at the Large Hadron
Collider (LHC).

2.2.1 The Large Hadron Collider

The Large Hadron Collider is a circular collider with a circumference of 27 km, which makes it the
largest and most powerful collider in the world [9]. It is located in a tunnel 100 metres underground,
at the headquarters of the European Organization for Nuclear Research (CERN) on the Franco-Swiss
border near Geneva, Switzerland. At the LHC, protons can be collided with a center-of-mass energy
of 13 TeV and the interaction products measured at one of several detectors.

An overview of the LHC accelerator complex can be seen in 2.2. Protons are inserted in bunches of
about 1011 protons. After receiving some initial energy in LINAC 2 and BOOSTER, they are further
boosted by the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) before being inserted into
the LHC ring at an energy of 450 GeV. There they begin travelling in opposite directions through the
two parallel beam pipes and continue being accelerated to 6.5 TeV. Superconductive dipole magnets
are used to keep the protons in their circular orbit while quadrupole magnets focus the beam. At the

5

Chapter 2 Experimental and Theoretical Background

four interaction points, where the proton bunches are collided, the main LHC experiments are located.
ATLAS and CMS are general-purpose detectors, designed to cover a large range of possible decay
products [10, 11]. ALICE is a heavy-ion detector specialised on studying the quark-gluon plasma [12],
while the LHCb experiment is dedicated to precision measurements of CP violation and searching for
rare 𝐵 meson decays [13].

Figure 2.2: Overview of the LHC complex [14]

2.2.2 The ATLAS detector

The ATLAS detector (A Toroidal LHC ApparatuS) is one of the general purpose detectors at the
LHC, designed to detect a large amount of physics processes, including searches for physics beyond
the Standard Model. It is shaped in the form of a large cylinder around the beam pipe and at 46 m
long and 26 m of diameter is the largest detector at the LHC [15]. It weighs about 7 000 t and has an
estimated material cost of 500 million Euro.

ATLAS consists of three major parts: the inner detector, the calorimeters and the muon spectrometer.
A massive magnet system surrounds the inner detector and the muon spectrometer. An overview of
ATLAS’ systems is shown in Figure 2.3.

Coordinate system

The coordinate system used in ATLAS is right-handed with the origin being the nominal interaction
point. The z-axis points in the direction of the beam pipe, the x-axis points to the centre of the LHC
ring and the positive y-axis is defined as pointing upwards [10]. Additionally, the azimuthal angle 𝜙 is
the angle around the beam axis (z) while the polar angle 𝜃 is measured from the beam axis.

6

2.2 The Large Hadron Collider and the ATLAS detector

Figure 2.3: Cut-away view of the ATLAS detector, showing the pixel detector, electromagnetic and hadronic
calorimeters, muon system and the magnet system [10].

Based on these coordinates some other useful variables can be defined. The pseudorapidity 𝜂

replaces 𝜃 and is defined as

𝜂 = − ln tan
(
𝜃

2

)
. (2.1)

The distance Δ𝑅 between objects is defined as

Δ𝑅 =

√︃
Δ𝜂

2 + Δ𝜃
2
. (2.2)

The transverse momentum is defined in the x-y plane:

𝑝T =

√︃
𝑝

2
𝑥 + 𝑝

2
𝑦 . (2.3)

With the definition of the transverse plane around the beam axis, the total transverse momentum of all
final states cancels out. If any deviation from this can be measured, one can conclude that particles
have passed through the detector without interacting.

Lastly, transverse mass 𝑚T is defined as

𝑚
2
T = 𝐸

2
T − 𝑝

2
T =

∑︁
𝑝

2
T −

∑︁
®𝑝2

T (2.4)

with the transverse energy 𝐸T =

√︃
𝑝

2
T + 𝑚

2. It is invariant under Lorentz boosts along the beam axis.

7

Chapter 2 Experimental and Theoretical Background

The magnet system

The ATLAS detector is equipped with a system of large superconducting magnets, consisting of a
solenoid, a barrel toroid and two end-cap toroids. The system spans 26 m in length and has a diameter
of 22 m, storing an energy of 1.6 GJ [10]. The central solenoid generates a magnetic field of 2 T for
the inner detector, bending any charged particles in the transverse plane, while the barrel and end-cap
toroids provide a 4 T magnetic field for the muon spectrometer [16].

The Inner Detector

The Inner Detector (ID) is the part of the ATLAS detector closest to the beam pipe and has a radius of
about 1 m and a length of 7 m. It is designed to provide high resolution tracking in order to reconstruct
primary and secondary vertices, as well as charged particle tracks within the pseudorapidity range
|𝜂 | < 2.5. The ID consists of three sub-components: pixel detectors, silicon microstrip trackers (SCT)
and the transition radiation tracker (TRT). The 2 T magnetic field provided by the central solenoid
bends the tracks of charged particles, allowing for the measurement of momentum and charge [17].
An overview of the ID is shown in Figure 2.4.

Figure 2.4: Cut-away of the ATLAS Inner Detector, showing the arrangement of pixel detectors, SCT and
TRT [10].

The pixel detector is the component of the ID closest to the beam pipe and consists of four layers of
high precision semiconductor pixels. The innermost layer, called Insertable B-Layer (IBL), is located
only 31 mm from the beam pipe and can achieve a resolution of 8× 40 µm [18].

The SCT is a silicon microstrip detector located around the pixel detectors. It works similarly to the
pixel detectors, however it uses readout strips instead of individual pixels. The module consists of four
cylindrical barrel layers covering the range |𝜂 | ≤ 1.4 and 9 disks per end-cap for the remaining range
1.4 < |𝜂 | < 2.5. It can achieve a resolution of 17× 580 µm.

8

2.2 The Large Hadron Collider and the ATLAS detector

The TRT is a gaseous ionisation detector, consisting of many layers of straw tubes, each acting as an
individual wire chamber. Particles pass through the Xenon-filled tubes and cause a hit by ionising the
gas. Radiators between the straw tubes increase the transition radiation from particles passing through
the boundary between different materials [19]. Every straw has a diameter of 4 mm and contains a
gold-plated W-Re wire. A total of 50 000 are located in the barrel and an additional 320 000 make up
the TRT end-cap.

The calorimeters

The ATLAS calorimeter system is designed to measure the energy of particles and covers a range of
|𝜂 | < 4.9. It consists of the electromagnetic calorimeter (ECal) and the hadronic calorimeter (HCal),
as well as the forward calorimeter (FCal) for the high-𝜂 region. High energy particles enter the
calorimeter and produce secondary particles by interacting with the material, resulting in cascading
particle showers. In an electromagnetic calorimeter electrons lose their energy via bremsstrahlung and
photons lose their energy via pair production. In a hadronic calorimeter hadrons lose their energy via
nuclear interactions. Through these processes the energy of particles is deposited in the calorimeters
and can be measured.

The ECal is a liquid argon (LAr) electromagnetic calorimeter, measuring the energy of electrons and
photons. It consists of the barrel section (|𝜂 | < 1.475) and two-end cap components (1.375 < |𝜂 | < 3.2).
Its primary job is to measure the energy of electrons and photons.

The HCal consists of three components. The tile calorimeter is a sampling calorimeter located
in the barrel and covering the region |𝜂 | < 1.7. It is made up of steel as the absorber material and
scintillating tiles as the active material [10]. The hadronic end-cap calorimeter is an LAr calorimeter
consisting of two wheels per end-cap and covers a pseudorapidity range of 1.5 < |𝜂 | < 3.2. Copper is
used as an absorber material.

Lastly, the FCal is an LAr calorimeter integrated into the end-cap cryostats consisting of three
layers, covering the pseudorapidity range of 3.1 < |𝜂 | < 4.9. The first layer uses a copper absorber
and is optimised of electromagnetic calorimetry while the other two layers are made of tungsten and
measure energy of hadrons.

The muon spectrometer

The muon spectrometer (MS) forms the outer layer of the ATLAS detector. It is designed to track
muons passing through the detector and measure their momenta in the region |𝜂 | < 2.7. The muon
system consists of trigger chambers for fast muon identification and high-precision chambers for
accurate momentum measurements. Bending of particle tracks is provided by the large toroid magnets
integrated into the muon system.

The trigger chambers are designed to identify muons in the range |𝜂 | < 2.4. It contains Resistive
Plate Chambers (RPC), a type of spark counter, in the barrel region and Thin Gap Chambers (TGC),
multi-wire proportional chambers with a small wire-to-cathode distance in the end-cap. These
detectors are specialised on quickly identifying bunch-crossings and discriminating the 𝑝𝑇 of muons,
allowing for fast identification of potentially interesting events.

Monitored drift tube chambers (MDT), a form of gaseous tube detectors, make up the majority
of the high-precision muon chambers, both in the barrel and end-caps. They allow for precision
tracking of muons throughout the entire muon system. Additionally, in the first layer of the end-cap at

9

Chapter 2 Experimental and Theoretical Background

|𝜂 | > 2, where high counting rates are expected, Cathode-strip chambers, another type of multi-wire
proportional chamber, are used.

The trigger system

During operation, proton bunches cross at a rate of 40 MHz (every 25 ns) with each bunch containing
1011 protons. This results in a total collision rate of 1 billion proton-proton collisions per second. The
amount of data generated at this rate is 70 TB/s, which is impossible to store and analyse [16]. To
mitigate this, several triggers are used to identify potentially interesting events and thereby step down
the data rate considerably.

The first trigger in ATLAS is the Level 1 trigger (L1). It is a hardware trigger, based fully on
custom electronics. Using rough data from the calorimeters and muon system it can identify potential
Regions-of-Interest (RoI), regions of the detector where the L1 trigger sees possible trigger objects,
and reduces the event rate to 100 kHz [20].

If an event passes the L1 trigger, it is passed onto the high-level trigger (HLT) which is software-based.
It uses full precision calorimeter and muon data, as well as data from the ID with fast reconstruction
algorithms to identify objects that would be interesting in physics analyses, such as missing transverse
momentum, jets or tau leptons. This way, the HLT reduces the event rate to 1 kHz. These events are
then written to permanent storage, where they can be studied in detail in offline physics analyses.

Particle identification & object reconstruction

Particles leave a unique signature as they pass through the ATLAS detector. Information from the
trackers, calorimeters and muon spectrometers is used in reconstruction algorithms to identify these
objects. Typical signatures of commonly seen particles are shown in Figure 2.5.

To reconstruct tracks in the inner detector, first raw hits are combined into clusters using a
clusterisation algorithm [22]. From these clusters tracks are built and lastly fits to the tracks are
performed. Additionally vertices, points where multiple tracks originate from, are reconstructed using
a vertex finding algorithm [23]. They can be classified into primary vertices, a collision point, and
secondary vertices, a point where a particle decayed into multiple charged particles.

Calorimeter hits are combined into clusters of cell signals to extract a significant signal from any
background. These clusters can then be used to reconstruct physics objects. A typically used algorithm
for this task is the topological cell clustering algorithm [24].

In the MS hits identified in each muon chamber are used to form segments, which are then fitted
together to form muon tracks [25].

From these reconstructed sections physics objects can be identified:

Electrons Electrons are reconstructed by combining tracks in the inner detector with energy deposits
in the electromagnetic calorimeter. In the precision region of the detector (|𝜂 | < 2.47) electrons are
selected using a likelihood-based (LH) identification, taking into account tracks, calorimeter clusters
and combined tracking and calorimeter information [26]. Several electron signal efficiencies can be
provided by using different working points of the LH discriminant, referred to as Loose, Medium and
Tight. Additionally, prompt electrons produced in signal processes are differentiated from background
processes by constructing an isolation quantity.

10

2.2 The Large Hadron Collider and the ATLAS detector

Figure 2.5: Overview of common particle signatures in the ATLAS detector [21]

Muons To reconstruct muons, tracks from the ID and MS are matched, sometimes with additional
information from the calorimeters [25]. Similarly to electron reconstruction several working points
can be chosen. Isolation criteria also apply.

Jets Jets are streams of particles originating from the hadronisation of a parton. First, clusters in
the calorimeters are identified using topological cell clustering [24]. Next, jets are reconstructed
from these clusters using the anti-𝑘𝑇 algorithm [27]. To differentiate jets coming from additional
pp collisions a jet vertex fraction (JVF) variable is defined and jets above a threshold value can be
cut [28].

Tagged jets Jets originating from b-quarks, called b-jets, have characteristic properties that enable
them to be identified over jets originating from other quarks. The most important of these properties
is the relatively long lifetime of b-quarks, around 1.5 ps, displacing the hadronisation point from the
primary vertex by several millimetres, which can be seen as a secondary vertex. At ATLAS, b-tagging
is performed with a multivariate algorithm (MV2) that uses the output of several simpler tagging
algorithms, typically based on the impact parameter or secondary vertex identification [29].

11

Chapter 2 Experimental and Theoretical Background

Missing transverse momentum Because the transverse plane is defined perpendicular to the beam
axis, the transverse momentum should be preserved in each event. Any missing transverse momentum
𝐸

miss
𝑇 indicates that neutrinos have escaped the detector undetected. 𝐸

miss
𝑇 is calculated by adding

the scalar sum of the 𝑝𝑇 of all fully reconstructed particles and jets (hard term) and 𝑝𝑇 of any
charged-particle tracks associated with the hard scatter event but not with any of the reconstructed
objects (soft term) [30].

2.3 Top quark physics

The only quark that can be measured directly is the top quark, making it a particularly interesting
object to study for particle physicists. This work will focus on the production of a single top quark
alongside a W boson.

2.3.1 The top quark

The top quark was first predicted by Kobayashi and Maskawa in 1973 and, after a decade-long search,
finally directly discovered independently by the CDF and DØ experiments in 1995 [31, 32].

At a mass of 𝑚𝑡 = (172.76 ± 0.30) GeV/𝑐2 [7] it is the heaviest of all known elementary particles,
many times heavier than any other fermion. It is an up-type quark with an electric charge of +2/3
and a spin of 1/2. The top quarks lifetime is extremely short at 𝜏𝑡 ≈ 5 × 10−25 s, about twenty times
shorter than the hadronisation time, leading to the top quark being the only quark not to form bound
hadron states.

The top quark decays to a W boson and a b-quark with a branching fraction of almost 100%. The W
boson will then decay leptonically (𝛤

(
𝑊 → ℓ𝜈ℓ

)
≈ 33%) or hadronically (𝛤 (𝑊 → 𝑞𝑞) ≈ 67%), as

shown in Figure 2.6.

Figure 2.6: Feynman diagram of top decay [33]

2.3.2 Top quark production at the LHC

At hadron colliders top quark production can be classified into two mechanisms: top quark pair
production refers to production of a top and an anti-top quark via the strong interaction while single-top
quark production is the production of single top quarks via the electroweak interaction.

12

2.3 Top quark physics

Top quark pair production

The dominating process of top quark production at the LHC is top quark pair production. At the
design LHC center-of-mass energy of

√
𝑠 = 14 TeV gluon fusion (𝑔𝑔 → 𝑡𝑡) dominates leading order 𝑡𝑡

production, making up about 90% of all top quark pairs created in the collider [7]. Quark-antiquark
annihilation (𝑞𝑞 → 𝑡𝑡) contributes with about 10%. Both processes are shown in Figure 2.7. The
cross section of top quark pair production at the LHC at

√
𝑠 = 13 TeV for a top quark mass of

𝑚𝑡 = 172.5 GeV/𝑐2 is [7]

𝜎𝑡𝑡 = 831.8+19.8
−29.2 ± 35.1 pb. (2.5)

g

g

t

t

(a)

q

q

t

t

(b)

Figure 2.7: Feynman diagrams for leading order 𝑡𝑡 production: (a) gluon fusion, (b) 𝑞𝑞 annihilation

Single top quark production

Single top quarks are produced using three mechanisms: t-channel, s-channel and associated production
of a top quark and W boson (tW-channel). They have smaller cross sections compared to 𝑡𝑡 production.
Examples of leading order diagrams for each channel are shown in Figure 2.8.

The t-channel, where a sea b-quark exchanges a W boson with a light quark and turns into a top
quark, dominates at the LHC with a cross section of 𝜎𝑡−channel = 217.0+9.0

−7.7 pb at
√
𝑠 = 13 TeV [34].

In the s-channel a light quark-antiquark pair annihilates to a virtual W boson, creating a top-bottom
quark pair. Due to the difficulty of finding an initial antiquark, this process has a low cross section at
the LHC with 𝜎𝑠−channel = (10.3 ± 0.4) pb at

√
𝑠 = 13 TeV. Lastly, the process where a bottom quark

interacts with a gluon, producing a top quark and an on-shell W boson, is called 𝑡𝑊-channel. At√
𝑠 = 13 TeV this channel has a cross section of 𝜎𝑡𝑊−channel = (71.7 ± 1.8 ± 3.4) pb.

2.3.3 The 𝒕𝑾 dilepton channel

The final state of the 𝑡𝑊-channel consists of a W boson and a top quark. As mentioned in Section 2.3.1
the top quark will decay to a bottom quark and a W boson with branching fraction B ≈ 100%.

The b-quark can be measured as a b-tagged jet, while the two W bosons can each decay either
hadronically or leptonically, leading to three different final states:

• both W decay hadronically (“all-hadronic” channel);

13

Chapter 2 Experimental and Theoretical Background

b

u

W

t

d

(a)

d

u

W

b

t

(b)

b

g

b

W+

t

(c)

Figure 2.8: Example diagrams for leading order single top production: (a) 𝑡-channel, (b) 𝑠-channel, (c)
𝑡𝑊-channel.

• one W decays hadronically and the other leptonically (“lepton+jets” channel);

• both W bosons decay leptonically (“dilepton” channel).

Despite having the lowest branching fraction, the 𝑡𝑊 dilepton channel is the easiest to separate from
any backgrounds due to its clean final state. It will be the only 𝑡𝑊 decay mode considered in this work.

Event selection

A leading order diagram with the full final state of the 𝑡𝑊 dilepton channel is shown in Figure 2.9.

Figure 2.9: Leading order example of the 𝑡𝑊 dilepton channel with full final state

The expected signature contains one b-tagged jet, two opposite charge leptons and missing transverse
energy from the neutrinos in the leading order. At next-to-leading order (NLO) gluon splitting can
produce an additional quark in the final state. In order to reduce various backgrounds, the following
cuts are applied:

• Single electron or muon trigger passed

• For electrons: tight identification, isolation, 𝐸T > 26 GeV

• For muons: tight isolation, 𝑝T > 26 GeV OR no isolation, 𝑝T > 50 GeV

• Opposite sign electron-muon pair

14

2.4 Monte Carlo simulations

• Leading lepton 𝑝T > 27 GeV

• Veto if third lepton 𝑝T > 20 GeV

• At least one jet with 𝑝T > 25 GeV, |𝜂 | < 2.5, b-tagged at 77% WP

𝒕 𝒕 background

By far the most important background in the 𝑡𝑊 dilepton channel is top quark pair production with
both W bosons decaying leptonically. Its final state has only one additional b-quark compared to the
𝑡𝑊 dilepton final state. Additionally, its cross section is an order of magnitude larger than the cross
section of 𝑡𝑊 :

𝜎𝑡𝑊 ≈ 72 pb; (2.6)

𝜎𝑡𝑡 ≈ 832 pb. (2.7)

In order to best deal with this background three regions are defined: The highest fraction of 𝑡𝑊
signal is expected in the 1j1b region, defined by events having exactly one b-tagged jet and no
additional jet. Because of radiative corrections, 2j1b is also considered a signal region. It contains
two jets of which one is b-tagged. Lastly, in order constrain the 𝑡𝑡 background normalisation, a 2j2b
control region is defined. It contains events with exactly two jets, both of which are b-tagged. In this
work, only the 1j1b and 2j2b regions will be considered.

2.4 Monte Carlo simulations

Monte Carlo simulations are an important ingredient in physics analyses at ATLAS. Data simulated
using the current understanding of the Standard Model can be compared to real data from the ATLAS
detector to find new physics and is also typically used to develop new analyses without having to work
on real data. An aspect crucial to this work is the availability of truth labels in MC simulated data.
These truth labels contain the true origin of an event, thereby enabling the use of machine learning
algorithms, which rely on tagged data to train. There are two steps to MC simulations at ATLAS: First,
events are generated from the initial collision to the final states. Next, the response of the ATLAS
detector to these events is modelled.

Event generation During event generation, the full physics process leading to a certain final state
is simulated. An overview of this process is shown in Figure 2.10. At first the initial hard scatter is
simulated, followed by the resulting cascade of colour charged particles being radiated, called parton
shower. Next, the hadronisation of resulting partons due to confinement as well as their subsequent
decays are modelled. Additionally, any secondary interactions between the proton remnants also have
to be simulated [35].

Detector simulation In the next step, the response of the ATLAS detector is simulated. The includes
modelling the path of each particle through the detector, its interaction with the various materials
and the response of the electronics [37]. Afterwards, the event is reconstructed as described in
Section 2.2.2.

15

Chapter 2 Experimental and Theoretical Background

Figure 2.10: Overview of a proton-proton collision simulated during event generation. The initial hard scatter is
represented by the large dark red blob, surrounded by parton showers in blue and red. Hadronisation events are
shown in light green, subsequent decays in dark green. The secondary scattering event is shown in purple, soft
photon radiation in yellow [36].

Nominal 𝑡𝑊 dilepton events are generated using Powheg-Box 1 [38], parton showering is simulated
using Pythia 8 [39]. 𝑡𝑡 simulation is performed using Powheg-Box 2, with parton showering again
being modeled by Pythia 8. The detector simulation is performed by the Geant 4 simulation
toolkit [40].

2.4.1 Systematic uncertainties

MC simulations cannot perfectly reflect real physics. Instead, processes are represented by imperfect
models. This introduces systematic uncertainties that have to be accounted for in physics analyses.
This work will take a closer look at the behaviour of two systematic uncertainties in the 𝑡𝑊 dilepton
channel, DR/DS and Parton showering.

Diagram Removal/Diagram Subtraction (DR/DS)

At next-to-leading order (NLO) 𝑡𝑊 and 𝑡𝑡 begin to interfere. Examples of two interfering diagrams
(doubly resonant diagrams) are shown in Figure 2.11. Due to 𝑡𝑡 having a much higher cross-section
this affects 𝑡𝑊 in a significant way that has to be accounted for [41]. Two treatments of this interference
term in the calculation of the 𝑡𝑊 cross section exist:

• Diagram Removal (DR): Any doubly resonant diagrams in the NLO 𝑡𝑊 amplitude are removed

16

2.4 Monte Carlo simulations

from the calculation.

• Diagram Subtraction (DS): A subtraction term is implemented, cancelling the 𝑡𝑡 contribution
at the cross section level

Results should be calculated using both of these methods, and if similar, the difference between the
two schemes can be accounted for as a systematic uncertainty. Here, DR is used as the nominal sample
while DS is used as the systematic sample.

g

g

t

W ν

`

b

W
ν

`

b

(a)

g

g

t

ν

`

b

t

W
ν

`

b

W

(b)

Figure 2.11: Example diagrams for (a) NLO 𝑡𝑊 production, (b) LO 𝑡𝑡 production with identical final states.

Parton showering (PS)

A crucial step in the generation of events is the modelling of parton showering and hadronisation. The
nominal sample is generated using Pythia 8, which incorporates the Lund string model. Herwig
7 [42] uses another method, the cluster model, to calculate this step. Both samples are compared to
estimate the systematic uncertainty.

17

CHAPTER 3

Machine Learning with Neural Networks

This chapter will introduce the concept of machine learning using advanced neural network techniques.
Section 3.1 gives a general introduction into the technique of machine learning, Section 3.2 will
explain one of the most advanced methods of machine learning, neural networks. Lastly, Section 3.3
will detail the specific type of neural networks used to conduct this analysis.

3.1 Introduction to machine learning

ENIAC, designed and built during the early 1940s, is widely considered to have been the first
general-purpose digital computer. The room-filling device was made of thousands of vacuum tubes,
capacitors and resistors and could perform 5 000 computations per second [43]. Since then the
capability of computers has been increasing exponentially, largely due to the invention and subsequent
miniaturisation of transistors, allowing for new mathematical techniques to be developed.

One such technique is the concept of machine learning, a process where computers can learn certain
tasks based on training data. Previously, while computers could process data faster than humans,
every step still had to be defined by hand, requiring a detailed understanding of the dataset. Machine
learning can greatly simplify this step by making the computer learn any connections by itself, based
on some set of input data.

Machine learning has been a quickly growing discipline over the last decades. As computers
become powerful enough to solve more complex problems, new applications for machine learning are
being found at a high rate. One technique that has seen particular attention in this field has been the
artificial neural network, a type of machine learning that is loosely based on the functioning principle
of the human brain. It works by building a network of interconnected nodes and learns by adjusting
the threshold at which each node fires. Neural networks have been used in many applications, from
successfully playing the game Go, a game previously thought to be too complex for computers, over
object recognition in computer vision to powering recommendation engines on many large websites.

In physics, machine learning has seen increased use in all steps of the analysis process. Examples
include triggering, object reconstruction or simulation [44]. In this work, it will be used to aid in
separation of signal to background samples, using many variables. Only subtle differences exist
between the samples, making this a difficult task, even for modern machine learning solutions.

However, many challenges still exist in this field. Models have to be individually designed and
any free parameters optimised separately for every task, a step that still mostly involves human work

19

Chapter 3 Machine Learning with Neural Networks

and requires some understanding about the input data. Additionally, as these models become more
complex and the amount of data increases, performance is still a major factor that cannot be ignored.
With inadequate hardware, complex models can take many hours or days of computation time to train
to a reasonable level. New hardware is being developed to cope with this. Of particular interest is
exploiting the high parallel computing capabilities of graphics processors (GPUs) that were originally
designed to render 3D scenes.

3.2 Neural networks

The fundamental building block of the human brain is a type of cell called neuron. It receives signals
from several other cells, processes them, and passes the result on to other neurons through nerve fibres
called axons. The brain is made up of almost 100 billion neurons in a network so complex, little is
understood about it to this day.

Neural networks aim to capture these biological principles in an artificial network. Instead of human
cells being connected through axons, many nodes, usually arranged in layers, are connected together
using weights. Each node processes any incoming data using an activation function and passes it
along to other nodes. To train, data is fed into the network through an input layer and after having
travelled through the network the output is compared to the desired result in a loss function. Using a
technique called backpropagation, weights are updated to nudge the output closer to the expectation.
Each update of weights is called an epoch. As this process is repeated many times, the network learns
to identify patterns in the data and can then be used to process previously unknown data. An example
of a full neural network is shown in Figure 3.1.

Figure 3.1: Example of a neural network. The input layer with variables 𝑥1 to 𝑥7 can be seen at the bottom.
Data is passed to the nodes in the hidden layer, and then to the single output node.

3.2.1 The perceptron model

The fundamental principle of a neural network is the perceptron model. It was first proposed by Warren
McCulloch and Walter Pitts in 1943 and subsequently improved. An overview of its components
is shown in Figure 3.2. The node is the equivalent of the neuron cell, receiving signals 𝑥1 . . . 𝑥𝑁

20

3.2 Neural networks

from many other nodes. Weights 𝑤1 . . . 𝑤𝑁 are applied to the signals before reaching the node.
Additionally, an optional constant bias b can be added. In the node, the sum(

𝑁∑︁
𝑖=1

𝑥𝑖𝑤𝑖

)
+ 𝑏 (3.1)

is computed. The result is then passed to an activation function 𝑓 (Σ). Similar to neurons in the
brain, it decides whether the node “fires”, depending on the input. It can also be used to normalise the
output. The result of the activation function is then sent to any connected nodes in the network.

Figure 3.2: Overview of the perceptron model, showing the central node, incoming connections 𝑥𝑁 with weights
𝑤𝑁 , an optional bias b and the output through an activation function f. The step function is shown in black, the
sigmoid function in red.

Activation functions

The choice of activation function can greatly influence the performance of a neural network, a selection
of the most common ones is described in the following.

Step function In the brain, neurons fire with a predefined signal if the sum of inputs is above a
threshold, and do not fire at all if not. This is represented by the step function

𝑓 (𝑥) =
{

0 𝑥 < 𝑡

1 𝑥 ≥ 𝑡
, (3.2)

where t is the threshold. An advantage of this function is that the output will always be either 0 and 1,
so it cannot “explode”.

Sigmoid function Another activation function is the sigmoid function. Unlike the step function it
is continuous and is usually preferred as it can capture more information. The sigmoid function is
defined as

𝑓 (𝑥) = 1
1 + 𝑒

−𝑥 . (3.3)

The sigmoid is typically used for the output node in classification tasks.

21

Chapter 3 Machine Learning with Neural Networks

(a) (b)

(c) (d)

Figure 3.3: Common activation functions: (a) Step function with 𝑡 = 0, (b) Sigmoid, (c) ReLU, (d) ELU

Rectified linear unit function (ReLU) A relatively new development in neural networks is the ReLU
activation function. It has the advantage that it doesn’t saturate in the positive x direction, often
improving learning, and being very efficient to compute. It is defined as

𝑓 (𝑥) =
{

0 𝑥 ≤ 0
𝑥 𝑥 > 0.

(3.4)

ReLU has become the preferred activation function for deep neural networks.

Exponential linear unit function (ELU) ELU is an evolution of the ReLU function, defined as

𝑓 (𝑥) =
{
𝛼(𝑒𝑥 − 1) 𝑥 ≤ 0
𝑥 𝑥 > 0.

(3.5)

Instead of falling to 0 for all 𝑥 ≤ 0 it transitions into an exponential function, eliminating the
discontinuous point at 𝑥 = 0 and shifting the mean of activations closer to zero, which has been shown
to improve learning [45]. It is, however, more computationally intensive.

3.2.2 Training the network

After the network structure has been built, it has to be trained. This is typically done through an
algorithm called backpropagation, where the deviation from the desired result is calculated and its

22

3.2 Neural networks

gradient is propagated back to the weights.
For signal/background classification in physics analyses, the output of the network needs to be in

binary classification mode. In this case, the output will range between 0 and 1, with 1 being an event
that is definitely signal and 0 being an event that is definitely background. Values in between are
meant to represent the probability that a certain event is a signal event.

Loss function

At the beginning of training the output will be essentially random. Any data used as training data has
to be labelled with a truth label, containing the correct classification of each event. To determine
the deviation from the output to this truth label, loss function is used. It computes the error that the
network makes as each training event passes through it. As it trains, the value of the loss function
should decrease, signalling that the network is learning more features in the data and improving its
classification performance. For binary classification tasks the most common loss function is binary
cross-entropy. It is defined as

𝐿 = − (𝑦 ln (𝑝) + (1 − 𝑦) ln (1 − 𝑝)) , (3.6)

where y is the truth label and p is the estimated probability for the network’s guess �̂�.

Optimisers

The training of the neural network can be seen as finding the global minimum in a multi-dimensional
function called loss surface, representing the impact of every parameter in the neural network on its
performance, such as the weights for every connection. This is done by using an optimiser algorithm.

Gradient Descent (GD) The most basic optimiser algorithm is called Gradient Descent. It works
by calculating the gradient at training step t

𝑔𝑡 =
1
𝑁
∇

𝑁∑︁
𝑖=1

𝐿
(
𝑓
(
�̂�𝑖 ,Θ𝑡

)
, 𝑦𝑖

)
(3.7)

where i represents one event in the dataset of size N and L is the loss function based on the network
configuration f and truth labels 𝑦𝑖. Θ denotes the parameters that are optimised during network
training. Based on this gradient all parameters are updated as follows:

Θ𝑡+1 = Θ𝑡 − ℓ𝑔𝑡 . (3.8)

ℓ is a parameter called learning rate. It determines the size of steps taken with each update. If ℓ is too
low, training may take a very long time, while a too high learning rate may cause the network to be
unable to find the global mininmum or even not to converge at all. The optimal value for ℓ changes
depending on the network topology, so it has to be optimised as one of the hyperparameters, free
parameters in the neural network that are adjusted by hand for best performance.

Stochastic Gradient Descent (SGD) with momentum GD has some significant disadvantages. A
single step is calculated on the whole training dataset, severely slowing down training if the dataset

23

Chapter 3 Machine Learning with Neural Networks

is large. Additionally, it is prone to get trapped in local minima and saddle points. The Stochastic
Gradient Descent algorithm improves training time significantly by updating after a small sample of
the dataset, called batch. This is achieved by modifying the gradient to

𝑔𝑡 =
1
𝑚
∇

∑︁
𝑖

𝐿
(
𝑓
(
�̂�𝑖 ,Θ𝑡

)
, 𝑦𝑖

)
(3.9)

with 𝑚 being the amount of events processed in each step, also called batch size. The optimal batch
size depends on the capabilities of the hardware, though it should not be large enough to contain a
significant fraction of the entire dataset.

A further improvement is the addition of momentum. It is designed to modify the step size based on
previous gradients, thereby speeding up training and reducing the probability of getting stuck in local
minima. Instead of directly updating the weights, the velocity v is first updated:

𝑣𝑡 = 𝛼𝑣𝑡−1 − ℓ𝑔𝑡 (Θ𝑡) (3.10)

𝛼 is called momentum and is another hyperparameter to be optimised. Parameters are then updated
with the velocity according to

Θ𝑡+1 = Θ𝑡 + 𝑣𝑡 (3.11)

Nowadays a modification of momentum, called Nesterov momentum [46] is often used. It effectively
changes from which point in parameter space the gradient is calculated, giving it the ability to “look
ahead”. This can help if the momentum term does not point in the direction of minimised loss, in
essence correcting it in the same step. The momentum equation is changed to

𝑣𝑡 = 𝛼𝑣𝑡−1 − ℓ𝑔𝑡 (Θ𝑡 + 𝛼𝑣𝑡−1). (3.12)

Adaptive moment estimation (Adam) A very popular and more advanced optimiser is the Adam
algorithm [47]. Classic gradient descent based optimisers struggle when the topology of the loss surface
changes rapidly, since parameters cannot be easily tuned to every step of the training process. Adam
tackles this issue by computing adaptive learning rates for each parameter based on an exponential
moving average of gradients. The first and second moments are estimated with

𝑣𝑡 =
(
𝛽1𝑣𝑡−1 +

(
1 − 𝛽1

)
𝑔𝑡

) 1
1 − 𝛽

𝑡+1
1

; (3.13)

𝑟𝑡 =

(
𝛽2𝑟𝑡−1 +

(
1 − 𝛽2

)
𝑔

2
𝑡

) 1
1 − 𝛽

𝑡+1
2

. (3.14)

The parameters Θ𝑡 are then updated using

Θ𝑡+1 = Θ𝑡 −
ℓ𝑣𝑡√
𝑟𝑡 + 𝜖

. (3.15)

𝛽1 and 𝛽2 are hyperparameters controlling the decay rate of the exponential moving averages, 𝜖 is
small and exists to prevent the denominator from blowing up with very small 𝑟𝑡 . Adam is considered
to be the most widely used optimiser.

24

3.2 Neural networks

Weight initialisation

In order to prevent activations to either go to zero or explode, preventing efficient training, all weights
in the network have to be initialised. Many initialisers exist, one of the most common is the Xavier
normal initialiser [48]. It initialises weights by drawing from a truncated normal distribution with
mean 0 and standard deviation

𝜎 =

√︂
2
𝑚
, (3.16)

where m denotes the number of incoming connections, sometimes also referred to as fan in.

3.2.3 Overfitting and regularisation

Overfitting

The goal of training the neural network is that it picks up general trends in the data and is capable of
then categorising previously unknown data with high precision. However, if the network parameters
are not tuned correctly or it trains for too long, it might pick up fluctuations and random noise in
the training sample. This process is called overfitting or overtraining. A simplified illustration of
overfitting can be seen in Figure 3.4.

Figure 3.4: Simplified illustration of overfitting. Red and blue dots represent data that should be separated by
the neural network. The black line represents an optimal fit to the data, while the green line represents an
overfitted network picking up random fluctuations [49].

In order to ensure the quality of the training and identify potential overfitting, the dataset is split
into two parts: the training sample and the validation or test sample. The training sample is used to
perform the actual training on the network. The validation sample is not used for any training, instead
the network uses this sample only to predict. The performance using the training and validation
datasets should be similar. If the network performs significantly better with the training data it is likely
that overfitting has occurred. By monitoring performance with both datasets continuously during
training, overtraining can be identified and countermeasures can be taken.

25

Chapter 3 Machine Learning with Neural Networks

Regularisation

Techniques to reduce the chance of overfitting are collectively called regularisation. Many methods
exist, and finding new ones has been a topic of continuing research in the machine learning field.

Dropout A widely used regularisation technique is dropout [50]. It works by dynamically turning
off nodes in a layer during each training step, thereby thinning the network and reducing strong
correlations between nodes, a typical sign of overfitting. This effectively means that at each training
step a slightly different, unique neural network is trained. Additionally, because it reduces the size
of the network, each training epoch is accelerated. A sketch of the impact of dropout is shown in
Figure 3.5.

Figure 3.5: Effect of dropout on a neural network: (a) A fully connected network, (b) A network with dropout
applied. Some nodes have no incoming or outgoing connections, effectively being turned off

Dropout can be added to every layer separately. 20% dropout for the input layer and 50% dropout
for each hidden layer has been suggested as a good starting point [50].

Batch normalisation Another modern regularisation method is batch normalisation [51]. In deep
neural networks the distribution of the input in each layer shifts during changes, as the parameters of
previous layers are adjusted. This is called internal covariance shift. It can make it difficult to train
these networks and makes them sensitive to learning rates and parameter initialisation.

In order to address these issues, batch normalisation normalises input for every layer, for each
training batch. This reduces the sensitivity to initialisation and allows higher learning rates without
causing overfitting or even a full failure of the training process.

Each output in the batch B =
{
𝑥1...𝑚

}
is normalised to the mean 𝜇B and standard deviation 𝜎

2
B of

the current batch.

𝜇B =
1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖 , (3.17)

𝜎
2
B =

1
𝑚

𝑚∑︁
𝑖=1

(
𝑥𝑖 − 𝜇B

)2
. (3.18)

26

3.2 Neural networks

The normalised output 𝑥𝑖 then is calculated with

𝑥𝑖 =
𝑥𝑖 − 𝜇B√︃
𝜎

2
B + 𝜀

. (3.19)

Early stopping A simple and effective method to prevent overtraining is early stopping. It works by
monitoring one or more metrics and stopping the training if a certain criterion is met [52]. The most
typical setup monitors the loss of the validation sample and stops the training if it stops improving for
several epochs, as this is a typical sign of overfitting. A visualisation of early stopping is shown in
Figure 3.6. The time that the early stopping algorithm waits before stopping training is called patience.
It should be low enough to stop training quickly enough without triggering due to random fluctuations
in the loss.

Figure 3.6: Sketch of early stopping, using the loss of the validation sample [53].

3.2.4 Performance metrics

In order to evaluate the quality of a neural network several metrics exist. Generally, it is good to take
multiple metrics into account rather than relying on a single one, as they may show different aspects
of the training process. The metrics used during this work will be described in the following.

Loss curve A simple way of evaluating a neural network is to inspect its loss curve. It shows how
the result of the loss function behaves as the network goes through multiple training steps. Ideally,
the loss curve should decrease quickly at the beginning and then transition into slowly approaching
a minimum, preferably the global minimum. A loss curve that is very noisy, not smooth, reverses
direction or otherwise diverges from the ideal shape usually means that the network isn’t training
correctly or not at all.

The loss curve can also be used to identify overtraining by plotting the losses of the training and
test sample together. Generally, both curves should track each other. A test sample loss that diverges
from the training sample loss indicates overtraining.

Receiver operating characteristic curve (ROC) The ROC curve is a metric specific to binary
classification tasks. It plots the false positive rate (FPR) on the x-axis against the true positive rate

27

Chapter 3 Machine Learning with Neural Networks

(TPR) on the y-axis. These values are defined as:

TPR =
𝑛(true positive)

𝑛(true positive) + 𝑛(false negative) (3.20)

and
FPR =

𝑛(false positive)
𝑛(false positive) + 𝑛(true negative) (3.21)

This way, the ROC curve visualises the relation of these two values, depending on at what discrimination
threshold is chosen. Random guessing results in a diagonal line with a slope of 1, as the network is
equally likely to make a right or wrong decision. A well trained network should result in a smooth
curve above the diagonal. A ROC curve that is lopsided, contains sudden jumps or is below the
diagonal often indicates issues with the training. It can also help pick a good threshold above which to
accept events as signal when the trained model is used for inference. The ROC curve can also be used
to identify overtraining in the final, trained model. If it is plotted for both test and training samples,
both curves should agree.

An important measure based on the ROC curve is the area under the curve (AUC), that can be
calculated by simple integrating the ROC curve. It measures the probability that the classifier will
rank a randomly chosen positive sample higher than a randomly chosen negative sample [54].

Separation histogram A metric that is very useful in physics-based tasks is the separation histogram.
The network response to each event is binned and added to a histogram, depending on the truth label.
These histograms are then plotted together, typically after being normalised. This provides an easy to
understand visualisation of how good the neural net is at separating signal from background events.

3.3 Adversarial neural networks

Deep neural nets have been very successful at discriminating tasks, taking some high-dimensional
input such as an image, an audio waveform or complex data and outputting some class label. However,
deep generative nets have not seen much success. These are a neural network type that has the ability
to generate new data by capturing the joint probability 𝑝(𝑋,𝑌) with X being a set of data and Y being
a set of corresponding labels. This is due to the fact that they have to capture much more complex
relationships than “simple” discriminative models. While their output may contain some key features
of whatever object should be generated, it is very easy to identify as fake. A way to improve this is the
use of an adversarial neural network (ANN1).

3.3.1 Generative Adversarial Networks

ANNs were first introduced as a solution by Ian Goodfellow el. al. in 2014, with the introduction of a
Generative Adversarial Network (GAN) [55]. Instead of just training a generative neural network,
a second network is added that works against the generator. This so-called adversary is another
discriminator model that tries to learn the task of distinguishing between real data and “fake”, generated
data. A sketch of this network structure is shown in 3.7. The goal of this model is to create a
1 Not to be confused with Artificial Neural Networks (ANN). Any mention of “ANN” in this work will refer to adversarial

neural networks

28

3.3 Adversarial neural networks

competition between the models, where the adversarial sniffing out fakes drives the generative net to
produce more real looking data.

Figure 3.7: Overview of a Generative Adversarial Network

In a GAN, the generator receives input noise variables 𝑝𝑧 (𝒛) and maps it to data as 𝐺

(
𝒛; 𝜃𝑔

)
,

where 𝜃𝑔 are the parameters of the generative neural network. Another neural network 𝐷
(
𝒙; 𝜃𝑑

)
is

trained to maximise the probability of correctly labelling data and samples generated by 𝐺. 𝐺 is
trained simultaneously to minimise log (1 − 𝐷 (𝐺 (𝒛))). This process is represented by the following
equation:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝒙∼𝑝data (𝒙) [log 𝐷 (𝒙)] + E𝒛∼𝑝𝒛 (𝒛) [log (1 − 𝐷 (𝐺 (𝒛)))] . (3.22)

𝑉 (𝐷,𝐺) is the combined value function for both networks.

3.3.2 Adversarial neural network as a pivot

To classify Monte Carlo simulated events into signal and background, classifier neural networks are
increasingly the tool of choice. A weakness of using a simple classifier is that it can be sensitive to
systematic uncertainties present in the sample, causing a large covariance shift. In order to reduce the
impact of these systematic uncertainties, a network model should approach a pivot, a quantity whose
distribution is invariant with respect to systematic uncertainties.

A solution based on ANNs was introduced by Kagan et.al. in 2016 [56]. In this approach the
discriminator network takes the place of the generator in the GAN model. Instead of using a generated
and a truth sample as input to the second network, nominal and systematic samples are used. A
systematic sample is a variation of the nominal sample with slight shifts in distributions, representing
the impact of systematic uncertainties. The adversarial is then trained to differentiate between nominal
and systematic samples. If the classifier is trained against this adversary it could reduce the impact
of systematic uncertainties on the model and make the whole model similar to a pivot, achieving
an overall more robust classification. In this variant of the ANN concept the network equation first
introduced in Equation 3.22 becomes

min
𝑓

max
𝑟

𝑉 (𝑟, 𝑓) = E𝒙∼𝑝nom (𝒙) [log 𝑟 (𝒙)] + E𝒛∼𝑝sys
[log (1 − 𝑟 (𝑓 (𝒛)))] . (3.23)

f represent the discriminator and r the adversary. The discriminator is trained for best classification,
represented by log 𝑟 (𝒙). The second network is trained to differentiate between nominal and systematic
distributions represented by log (1 − 𝑟 (𝑓 (𝒛))).

29

Chapter 3 Machine Learning with Neural Networks

The loss function takes the place of the value function 𝑉 (𝑟, 𝑓). To train the combined network a
combined loss function is required:

L = 𝐿 𝑓 − 𝜆𝐿𝑟 . (3.24)

𝜆 is an additional hyperparameter that controls the impact of the adversary on the overall training.
Each training iteration happens in two parts. First, the discriminator is trained using the combined

loss function L, then the adversary is trained using its loss function 𝐿𝑟 . An overview of the whole
setup can be seen in Figure 3.8.

Figure 3.8: Sketch of the ANN setup: MC samples X are fed into the classifier f with parameters 𝜃 𝑓 . Its output
is passed into the adversary r with parameters 𝜃𝑟

.

30

CHAPTER 4

Adversarial Neural Network in the 𝒕𝑾 Dilepton
Channel

In this chapter the setup an adversarial neural network in the 𝑡𝑊 dilepton channel is described.
Section 4.1 introduces the motivation to trial an ANN in this channel, Section 4.2 details the technical
implementation using the TensorFlow and Keras libraries. Afterwards, the choice of Monte Carlo
samples and variables is described in Sections 4.3 and 4.4. Performance metrics are introduced in
Section 4.5. Lastly, the hyperparameters of this network and the strategy of optimising them is detailed
in 4.6. Chapter 5 will then show how the process of optimisation could be heavily sped up.

4.1 Motivation

As explained in Section 2.3.3, one of the biggest difficulties in the 𝑡𝑊 dilepton channel is the separation
of 𝑡𝑊 signal events and 𝑡𝑡 background events. This is due to their very similar signature in the detector,
differing by only a single bottom quark. In recent analyses a simple machine learning algorithm for
classification problems, “Boosted Decision Trees” (BDT) [57], has been used with good success. An
example of separation and ROC curve of a BDT training in the 1j1b region are shown in Figure 4.1.
Recently, a simple feed-forward deep neural network based on Keras has shown similar performance.
A comparison plot showing ROC curves for both the BDT and neural network techniques is shown in
Figure 4.2.

However, both of these techniques suffer from high systematic uncertainties influencing the training
performance. As shown in 3.3.2, an adversarial neural network setup might help reduce the impact of
these uncertainties on 𝑡𝑊-𝑡𝑡 separation.

A proof of concept has first been described in [60], however it was plagued by significant issues
leaving the viability in question. This thesis will attempt to address two unsolved problems. First, the
crippling performance constraints of the network, often taking more than 24 hours for a full training,
need to be improved. After that, a more thorough attempt at reducing the instabilities of the network is
performed.

31

Chapter 4 Adversarial Neural Network in the 𝑡𝑊 Dilepton Channel

Figure 4.1: Training and testing separation of 𝑡𝑊 and 𝑡𝑡 in the 1j1b region using a BDT classifier and its
associated ROC curve [58]

Figure 4.2: Comparison of ROC curves for various machine learning methods in the 1j1b region. The “Keras”
line represents a feed-forward neural network with multiple hidden layers [59].

32

4.2 Tensorflow & Keras

4.2 Tensorflow & Keras

The 𝑡𝑊 dilepton adversarial neural network is built using Keras [61]. Keras is a popular machine
learning API, interfacing with the open-source machine learning library TensorFlow 2 [62]. This
allows for fast and intuitive building of efficient neural network structures while ensuring maximum
performance. For this ANN, the functional API of Keras is used, a more flexible way to write complex
models compared to the typically used sequential model [63].

4.2.1 Network setup

First the discriminator and adversary as described in 3.3.2 are built separately using the Keras
functional API. Both networks are then combined into the full model. The following network topology
is used:

Discriminator

• Input: variables as defined in 4.4.

• 5 hidden layers with 128 nodes each, ReLU activation

• Regularisation: Dropout (rate to be optimised), Batch normalisation

• Output: 1 node, sigmoid activation

• Optimiser: SGD, learning rate and momentum to be optimised

Adversary

• Input: Discriminator output as described in 3.3.2

• 4 hidden layers with 128 nodes each, ReLU activation

• Regularisation: Dropout (rate to be optimised), Batch normalisation

• Output: 1 node, sigmoid activation

• Optimiser: SGD, learning rate and momentum to be optimised

Losses for both networks use the built-in loss function binary_crossentropy. They are first defined
separately

L 𝑓 = binary_crossentropy(𝜃 𝑓) (4.1)

L𝑟 = binary_crossentropy(𝜃𝑟) (4.2)

and then combined, with 𝜆 as an additional hyperparameter:

L𝑟 (𝜃 𝑓 , 𝜃𝑟) = L 𝑓 (𝜃 𝑓) − 𝜆L𝑟

(
𝜃𝑟

)
. (4.3)

The definition of targets is shown in Table 4.1. The classifier sees 𝑡𝑊 as signal and 𝑡𝑡 as background,
while the adversary considers any nominal samples as signal, while systematic samples are background.

33

Chapter 4 Adversarial Neural Network in the 𝑡𝑊 Dilepton Channel

In order to improve runtime and reduce the risk of overtraining or the network getting out of control
an early stopping algorithm is used. If turned on, it stops the training if either the discriminator or
combined validation losses stop improving.

f r
𝑡𝑊nom 1 1
𝑡𝑡nom 0 1
𝑡𝑊sys 1 0
𝑡𝑡sys 0 0

Table 4.1: Targets used in the adversarial neural network training

4.2.2 Network training

An overview of the training procedure is shown in Figure 4.3. In order to reach a good starting point,
the classifier is first pretrained using just its loss L 𝑓 , typically for 10 epochs. The adversary may
also be pretrained, though the best results have been found with little adversary pretraining. After
pretraining is completed, combined training is started. Training loops between the discriminator,
using the combined loss L 𝑓 − 𝜆L𝑟 and the adversarial with loss L𝑟 . Typically, for a single iteration,
each network is trained for one epoch, though more advanced configurations are possible.

Figure 4.3: Training procedure for the ANN

Practically, this can be done by manually training each model for one epoch per iteration, switching
which models weights are updated in between and implementing early stopping manually. Alternatively,
a TensorFlow callback can be used to turn on and off weight updates between epochs. While the latter
method is less flexible it is preferred as starting and stopping training manually causes significant
overhead.

Note that “epoch” always refers to one training step of either network, while “iteration” refers to
one full step of training both networks, including switching and early stopping. With the network
setup used in this work, one iteration will always contain two epochs and consequently take twice the
time to complete.

4.3 Monte Carlo samples

Monte Carlo samples are split into three campaigns. MC16a matches 2015 and 2016 data, MC16d
matches 2017 data and MC16e matches 2018 data. For this work 𝑡𝑊 and 𝑡𝑡 samples from the Rel21
v29 production version are used. The full list of samples can be seen in Appendix A.

34

4.4 Variable selection

4.4 Variable selection

While creating a variable ranking specifically for this adversarial neural network might yield good
results in the future, it currently requires computation time that is out of the scope of this work.
Instead, the choice of variables is adopted from the previous work on this topic [60]. There, using
simple kinematic variables was shown to be ineffective and quickly cause overtraining. Instead, a
more complex set of kinematic variables was chosen, based on the most significant variables during
BDT training [58].

These variables have been shown to work well with neural networks too, so they are an obvious
choice. The list of variables in the 1j1b and 2j2b regions is shown in Table 4.2, with the following
definitions:

• 𝑝
sys
T (𝑜1, . . . , 𝑜𝑛), the magnitude of the vector sum of transverse momenta;

• 𝑚(𝑜1, . . . , 𝑜𝑛), the invariant mass of the system;

• 𝑚T(𝑜1, . . . , 𝑜𝑛), the transverse mass of the system;

• Δ𝑝T(𝑠1, 𝑠2), the 𝑝T difference between the systems;

• Δ𝑅(𝑠1, 𝑠2), the distance between the systems in 𝜙 − 𝜂 space;

where 𝑜1, . . . , 𝑜𝑛 stands for one of the objects ℓ1, ℓ2, 𝑗1, 𝑗2, 𝐸
miss
T and 𝑠1 and 𝑠2 stand for complex

systems of objects.

1j1b 2j2b

𝑚(ℓ1 𝑗1) 𝑚(ℓ1 𝑗1)
𝑚(ℓ2 𝑗1) 𝑚(ℓ1 𝑗2)
𝑝

sys
T (ℓ1ℓ2 𝑗1𝐸

miss
T) 𝑚(ℓ2 𝑗2)

𝑝
sys
T (𝑗1𝐸

miss
T) 𝑚(ℓ2 𝑗1)

𝑝
sys
T (ℓ1ℓ2) 𝑝

sys
T (𝑗1 𝑗2)

𝐶 (ℓ1ℓ2) 𝑝T(𝑗2)
Δ𝑝T(ℓ1, ℓ2) Δ𝑅(𝑗1, 𝑗2)
𝑚T(𝑗1𝐸

miss
T)

𝑚(ℓ2 𝑗1𝐸
miss
T)

𝑝𝑇 (𝑗S)

Table 4.2: Variables used for training in the 1j1b and 2j2b regions respectively, taken from [58].

4.5 Performance metrics

Judging the performance of the ANN is more complex than for a simple classifier network.
Consequently, multiple approaches are taken:

ROC curve / AUC Plotting the receiver operator characteristic (ROC) curve as well as calculating
the area under the curve (AUC) is a good metric to judge the performance of a binary classifier
network. It does however not give any insights on the effect of the adversary, which is why it is of

35

Chapter 4 Adversarial Neural Network in the 𝑡𝑊 Dilepton Channel

limited usefulness here. The ROC curve is used to ensure correct training of the classifier and avoid
its performance from falling too much below the pure classifier network approach due to the effect of
the adversary. It is also used to identify any overtraining in the classifier, which would be indicated by
the ROC curves of training and test sample not agreeing.

Figure 4.4: Example of the ROC curve plot. Good training is indicated by a smooth curve over the diagonal.
Overtraining is indicated, if the solid train and dotted test curves do not agree.

Loss curves Probably the most important metric is the loss curve plot. Losses of the discriminator,
adversary and combined networks are plotted together over the duration of the training. If the network
is training correctly the discriminator and combined network loss curves should steadily fall, while
the performance of the adversary worsens over time. If the networks do not balance out correctly it
should become immediately obvious when looking at this plot. Additionally, by plotting losses of
both the training and test sample, overtraining can be identified. An example of a loss curve plot for
this network is shown in Figure 4.5.

Systematic impact/separation The ultimate goal of training this adversary neural network is to
reduce the impact of systematic uncertainties on the classifier training. In order to judge this, the
distribution of all four samples is plotted as a separation histogram. Additionally, the ratio of systematic
to nominal samples in each bin is plotted. This ratio should quickly indicate if nominal and systematic
samples are treated more similarly by the network. An example of this plot is shown in Figure 4.6.

4.6 Hyperparameter optimisation

With a network as complex as this ANN hyperparameter optimisation is a difficult task. Due to the
nature of duelling networks it is much more sensitive to small changes as well as requiring more than
double the number of parameters to be optimised.

36

4.6 Hyperparameter optimisation

Figure 4.5: Example of loss curves in the ANN. The top curve shows the loss of the classifier, the middle curve
plots the loss of the adversary. The bottom curve shows the loss of the combined network with L 𝑓 − 𝜆L𝑟 . In
all cases the continuous curve shows the loss of the training sample, while the dotted curve shows the loss of the
test sample. Some separation between these two is expected as dropout is only applied during the training, not
during testing.

Figure 4.6: Example of a plot showing network response sample as well as the ratio of systematic and nominal
sample below. If the impact of the systematic on training is reduced, the points of the ratio plot should be closer
to 1 for bins with sufficient statistics.

37

Chapter 4 Adversarial Neural Network in the 𝑡𝑊 Dilepton Channel

To simplify the optimisation process somewhat, the following strategy is used: First, the adversarial
is switched off by setting 𝜆 to 0 and only the discriminator network is trained. This way, the
discriminator can be individually optimised to maximise its performance. Then, the adversary network
is turned on and its parameters are tuned in order to achieve a situation where both networks are
learning properly. During adversary optimisation, classifier parameters are also adjusted, as its
optimisation only serves as a reasonable starting point of overall optimisation of the model.

In the following sections, the optimisation strategy for each parameter is described. The final
optimised values are shown in Chapter 6.

Adversary behaviour The behaviour of the adversary falls into one of two categories. If it is
too weak, no training of the adversary happens at all and the ANN acts like a regular classifier.
Alternatively, if the adversary is capable of training based on the hyperparameter settings, it will
always eventually overwhelm the classifier and invalidate the training. A behaviour “in between” those
two extremes could not be found, so the best results were achieved by carefully tuning values that
allowed the classifier to train for as long as possible before the adversary overtakes it and using early
stopping. This way training is aborted at the optimal point, before the classifier performance drops off.

4.6.1 Random seed

Usually, when training neural networks, the random seed determining initial states of TensorFlow and
related libraries does not have to be fixed. Only for the process of splitting the samples into training
and validation samples a seed is necessary to ensure samples and their weights are split the same way.

During this work, however, it has become clear that the ANN can be very unstable with respect to its
initial state and other randomness in the training. Training multiple times with the exact same settings
can yield vastly different results as the random seed is different in each training run, especially in the
1j1b region with PS systematic. Due to this, the random seed is fixed for each region through the
entire optimisation process. While this is generally not recommended, it is the only way to allow the
optimisation process to go forward in the more unstable regions. As more stable states are reached, it
might be possible again to remove this restriction and test for general applicability of results, regardless
of the small variations introduced by a non-fixed random seed.

4.6.2 Nodes & layers

It has been shown that 128 nodes and 4–5 hidden layers work well [60]. A lower number of nodes and
layers is tested, however, as Figure 4.7 shows, this only reduces network quality. Higher numbers do
not bring improved results, so the value of 128 nodes is kept, as well as five layers for the classifier
and four layers for the adversary.

4.6.3 Initialisers

Many possible initialisers are implemented in Keras. The classic glorot_normal initialiser, Keras’
name for the Xavier normal initialiser introduced in Section 3.2.2, seems to work well. Other
initialisers are tested, however they either have no noticeable influence on the training or cause the
training to fail altogether.

38

4.6 Hyperparameter optimisation

(a) (b) (c)

Figure 4.7: Network training with the DR/DS systematic in the 1j1b region with various number of nodes per
layer in the classifier: (a) 32 nodes, (b) 64 nodes, (c) 128 nodes

Figure 4.8: Losses using the Adam optimiser. In this case, the training fails entirely.

4.6.4 Optimiser

The classic SGD optimiser is used as default. Test runs with the more advanced AdaGrad and Adam
optimisers show that the network seems to be too unstable to deal with these algorithms, so the default
is kept. Adam may provide better results if run with completely different hyperparameters, however,
even after some tuning it was not possible to find a stable configuration. Figure 4.8 shows an example
of the network attempting to train using the Adam optimiser.

Learning rate

Learning rate has to be tuned very carefully for this adversarial neural network, as even small changes
could cause training to shift out of balance. A large spaces of possible values is searched for each
region. Every dataset works best with a different learning rate. In general it can be observed that very
low learning rates will severely slow down training for no apparent benefit. This behaviour is shown
in Figure 4.9.

39

Chapter 4 Adversarial Neural Network in the 𝑡𝑊 Dilepton Channel

(a) (b)

Figure 4.9: ANN training for different learning rates: (a) ℓ = 0.02, (b) ℓ = 0.2.

Momentum

A high momentum value should be able to speed up training considerably, unless obvious issues arise
in training. Training using several momenta with the DR/DS systematic in the 1j1b region is shown
in Figure 4.10. No problems arise when increasing the momentum so a value of 0.8 is chosen.

Activation

Several options exist for the activation function for non-output layers. Three functions built into Keras
are tested: relu, elu and sigmoid. The most consistent results can be achieved using relu, while
the other two options tend to act less predictably. They can sometimes match the performance of
relu, but will often cause training to not function properly or perform worse. Since no configurations
are found where elu or sigmoid performs noticeably better, the more stable relu option is chosen.
An example of elu and sigmoid not training properly, despite identical settings, can be seen in
Figure 4.11

4.6.5 Regularisation

Batch normalisation

This network is quite deep and complex, so batch normalisation could help stabilise the network and
make it slightly less sensitive to initialisation. The network is tested with batch normalisation on and
off. As can be seen in Figure 4.12, performance is significantly improved with batch normalisation
turned on.

Dropout

Dropout is tested for rates between 0% and 80% for both networks as well as in the input layer.
Relatively low rates of dropout work well at improving runtime without reducing performance. For
high rates of dropout the network tends to collapse quickly, as can be seen in Figure 4.13. Based on

40

4.6 Hyperparameter optimisation

(a) (b)

(c)

Figure 4.10: ANN training using several momenta: (a) 𝛼 = 0.0, (b) 𝛼 = 0.3, (c) 𝛼 = 0.8.

(a) (b) (c)

Figure 4.11: ROC curves with several activation functions: (a) sigmoid, (b) elu, (c) relu

41

Chapter 4 Adversarial Neural Network in the 𝑡𝑊 Dilepton Channel

(a) (b)

Figure 4.12: Training with the DR/DS systematic in the 2j2b region with batch normalisation turned (a) off, (b)
on.

these results a dropout of 30% is chosen for all hidden layers, as well as 10% for the classifier input
layer.

(a) (b)

Figure 4.13: Network output training with DR/DS systematic in the 1j1b region with (a) 80% dropout rate.
The network collapses and produces no useful output. (b) 30% dropout rate, best performance is achieved.

Early stopping

In addition to dropout and batch normalisation, early stopping is used. There are several benefits
that make this an important tool in this work. Firstly, monitoring the validation loss of the classifier
network helps prevent it from overtraining. However, the more crucial use of early stopping in this
work has been to prevent the adversary network from getting “out of control”. Figure 4.14 shows an
example of the training running for a full 1 000 epochs with high 𝜆 and no early stopping active. The
classifier is quickly overwhelmed and the network behaves erratically. By monitoring the classifier

42

4.6 Hyperparameter optimisation

validation loss and stopping the training if it stops improving, this behaviour can be prevented and the
training stopped at an appropriate point. In addition to this, early stopping is also useful to significantly
save time during hyperparameter optimisation. For most parameters a large number of values has to be
tested, many of which cause training to not work properly. With early stopping active on the validation
losses of classifier and combined model, some of these runs will be prevented from training the full
amount of epochs. This frees up the limited GPU slots quicker and hyperparameter optimisation can
be performed more efficiently.

Early stopping is turned on for the classifier and combined validation losses, with a patience of 10
epochs.

Figure 4.14: Example of a training run with 𝜆 = 1 and no early stopping applied. The adversary quickly
dominates and training behaves erratically.

4.6.6 Lambda

𝜆 is the most important hyperparameter in the network. It controls how much the loss of the adversary
impacts the overall loss during training. It should be set to a value that allows the discriminator to
train sufficiently, while the adversary gradually loses performance. A typical behaviour seems to
be that the adversary slowly begins dominating the classifier, leading to an early stop due to lacking
improvement of the classifier. Lack of early stopping will cause the network to get out of control and
return nonsensical results.

To find the optimal value of 𝜆, a large range of values is scanned and results checked for the desired
behaviour described above. It appears to vary greatly between different datasets. Training behaviour
for various values of 𝜆 is shown in Figure 4.15.

43

Chapter 4 Adversarial Neural Network in the 𝑡𝑊 Dilepton Channel

(a) (b)

(c)

Figure 4.15: Network behaviour for several values of 𝜆: (a) 𝜆 = 0.01, the adversary is barely training; (b)
𝜆 = 0.05, both networks remain balanced for the full training duration; (c) 𝜆 = 0.1, the adversary quickly begins
dominating and training is automatically stopped to prevent the discriminator loss curve from reversing.

44

CHAPTER 5

Runtime Optimisation

One of the most limiting factors in the previous work done on ANNs in the 𝑡𝑊 dilepton channel [60]
was the poor training performance. Due to the complex model, large dataset and slow learning it
can take many hours, sometimes more than a full day, to train the network once. This leads to great
difficulties when trying to complete the delicate task of optimising the hyperparameters of this ANN.

A major goal of this work is to significantly improve the performance of the 𝑡𝑊 ANN and make
hyperparameter optimisation a feasible task. This chapter will describe how this goal was reached.
First, the differences between CPUs and GPUs are introduced in Section 5.1. Next, Section 5.2 lists
the setup and performance metrics used to measure the performance improvement. In Section 5.3, 5.4
and 5.5 the process of heavily improving the performance is detailed. Lastly, Section 5.5 aims to
measure how the ANN impacts performance compared to a regular classifier network.

5.1 Introduction to CPUs and GPUs

Neural network training is mostly composed of performing millions of matrix multiplication operations.
If large enough batches sizes are chosen, many of these operations can be performed simultaneously
without affecting the training.

Previously, regular processors were used to train neural networks. Large networks of processor nodes
can run many training instances at once, allowing for easy hyperparameter optimisation. However,
processors are inherently limited in their parallelity. Typical CPUs work with 4–32 logical cores,
allowing only few calculations to be performed at once respectively [64]. These cores are optimised
for general computing tasks that are rarely highly parallel. Additionally, a lot of transistors in a CPU
are devoted to caching and control instead of processing, further limiting raw training performance.

A growing trend in deep learning has been the use of graphics processing units (GPUs) for training
and inference. GPUs are optimised for rendering 3D scenes, a highly parallelisable task that involves
performing millions of vector calculations. This has led to GPUs getting optimised for very high
parallelity and containing often thousands of low performance cores. This feature can also be used in
neural network training, potentially improving performance by orders of magnitude if the size of data
batches can be increased significantly. Figure 5.1 exemplifies the difference in parallel data processing
capability between CPUs and GPUs.

TensorFlow natively supports NIVIDA’s CUDA and cuDNN architectures, so training can easily be
done on an installed NVIDIA GPU if available [65].

45

Chapter 5 Runtime Optimisation

Figure 5.1: Architecture differences between a CPU and a GPU. The GPU contains many more cores and has
more space dedicated to processing [64].

5.2 Performance metrics & setup

To accurately measure performance differences between different hardware, the following setup is
used for every run:

• Region: 1j1b

• Systematic: PS

• 100 epochs

• No early stopping

Initialisation and pretraining are performed for every run. Timing starts with the start of the main
adversarial training using Python’s built in time.time() function and ends after training is completed.
From the measured time the epochs per hour are extrapolated.

5.2.1 Batch size

The amount of data processed in each training step, the batch size, can have a major impact on the
performance of the network. if the batch size is too small, performance will be severely reduced as
the network is not able to exploit available resources. However if the batch size is large enough to
be a significant part of the overall data, training quality can be reduced. Additionally, when using a
batch size that is too large to be handled by the hardware at once, diminishing returns will also cause
training performance to decrease.

For each hardware configuration, multiple batch sizes are tested to find the optimal point of highest
performance without running into memory constraints or reducing training quality.

5.3 Performance on CPU

Classically, networks are trained on regular computer processors. As mentioned in Section 5.1,
parallelity is limited on CPUs, with typically only 4–32 calculations being run at once.

46

5.3 Performance on CPU

In this case, the network is trained on the worker nodes of the Bonn Analysis Facility (BAF2)
computing cluster, powered mostly by Intel® Xeon® E5-2680 v4 processors, running at a base clock
of 2.40 GHz. The raw performance of this CPU, if all 28 logical cores are used, peaks at about 1.3
TFLOPs1. Performance is measured with 8 and 16 logical cores. Note that due to the architecture of
this computing cluster, actual runtime can vary by a significant amount, influenced by extraneous
circumstances such as general load of the cluster, choice of node and many more. Due to this,
performance shown here is only meant to be an approximation and not a true benchmark.

Performance over several batch sizes is shown in Figure 5.2. In all cases, performance seems to
peak around a batch size of 4 096 to 16 384 events with diminishing returns above that. While there
are differences between using 8 and 16 cores, they do appear to be rather small, suggesting that I/O
or caching are the main bottleneck here. This test was performed with the standard installation of
TensorFlow and other libraries. Intel suggests the use of an optimised version of TensorFlow on their
CPU, however a quick test showed that there was no visible performance uplift. Since GPUs promise
to be significantly faster, investigating CPU optimisation further does not seem to be necessary.

Figure 5.2: Performance of CPU with 8 and 16 cores allocated across several batch sizes

The performance achieved with higher batch sizes ranges between 75–100 epochs/hour, a 3–4x
uplift from the previously used 512 batch size. At this speed, a full 1 000 epoch training run would
take about 13 hours to complete. While that is a significant improvement, it still is likely too long to
reasonably perform hyperparameter optimisation using CPU training.

1 FLOPs: floating point operations per second, a common measure of raw computer performance

47

Chapter 5 Runtime Optimisation

5.4 Performance on GPU

The use of graphics cards for training neural networks promises significant performance uplift that
could make optimising this ANN a realistic task. For the following tests the newly installed GPU node
in the BAF2 cluster is used. It is equipped with four NVIDIA GeForce® GTX 1080Ti graphics cards,
delivering a raw performance of 11.3 TFLOPs each. Each card also has 11 GB of integrated memory
which is enough to store even larger datasets. The node is powered by an Intel® Xeon® E5-2620 v4
processor, running at 2.10 GHz.

Performance is measured using the standard TensorFlow 2.1.0 GPU-optimised binaries, with the
XLA compilation enabled. Batch sizes from 1024 up to the maximum of 262 144 are considered.
Figure 5.3 shows that performance using these GPUs is significantly higher than on CPUs, peaking at
almost 1 400 per hour. This means that a total training time well below one hour can be achieved.
The sweet spot of batch size appears to be reached at 65 536, with another doubling only bringing a
negligible improvement in performance.

Figure 5.3: Performance of the ANN on CPU and GPU across multiple batch sizes

With this significant uplift in performance more effective optimisation should become viable,
however at the current time availability of GPUs on the BAF2 cluster is still limited.

5.5 Miscellaneous improvements

Model switching via callbacks

Previously, training the different models was switched manually. For each iteration, one epoch was
trained per model with weights being frozen in between. While this is simple to implement and allows

48

5.6 Comparison with standard classifier network

for great flexibility, it requires TensorFlow to restart the training with every step, adding overhead.
In order to remove this overhead, TensorFlow’s callback system can be used. This allows the user to

call functions during training depending on certain conditions. For the simplest case of training each
network for only one epoch, a simple function can be used that flips the model to be trained on with
each epoch.

Accelerated Linear Algebgra (XLA)

An important improvement to performance can be the TensorFlow library itself. Upgrading to
TensorFlow 2.1 improved performance by several percent. Another small uplift in performance was
brought by activating the Accelerated Linear Algebra (XLA) compilation mode. XLA can compile
TensorFlow graphs to make better use of the specific hardware in the system, thereby improving its
efficiency.

Newer versions of TensorFlow may further add to this performance improvement, as certain
calculations are optimised more for specific sets of hardware.

5.6 Comparison with standard classifier network

Lastly, in order to gauge the true impact of the adversarial network setup on performance, it is
compared to a standard classifier. In order to ensure a fair comparison, the same code is used for both
tests.

For the pure classifier test the code is simply modified: The adversarial and combined models
are not built and the training is changed to only train the single classifier model. Pretraining of the
classifier is left unchanged, then it is trained for 100 epochs. Because the classifier model is updated
only every other epoch during ANN combined training, the ANN is trained for 200 epochs instead and
the “Classifier epochs per hour” metric is used. All other settings are left unchanged to ensure a fair
comparison.

The results are shown in Figure 5.4. The raw classifier achieves about 3 400 epochs/hour, while the
full ANN can only train the classifier model for 740 epochs/hour. This is a performance reduction of
4.6x if the ANN is used. Note that this does not account for differences in optimal hyperparameters in
the Adversary Neural Network training.

49

Chapter 5 Runtime Optimisation

Figure 5.4: Performance comparison between pure classifier and ANN training.

50

CHAPTER 6

Results

In this chapter the results obtained from optimising the adversarial neural network in the 𝑡𝑊

dilepton channel are presented. For each dataset, general behaviour of the network with optimised
hyperparameters and discussed first. Next, the network response is analysed with respect to the goal
of reducing impact of systematic uncertainties. Results from training with the DR/DS systematic in
the 2j2b and 1j1b regions, respectively, are detailed in Sections 6.1 and 6.2. Results with the PS
systematic in the 1j1b region is shown in Section 6.3.

6.1 ANN training with DR/DS systematic in the 2j2b region

The network appears to act relatively stable when using the DR/DS systematic in the 2j2b region,
likely due to the relatively high separation compared to other regions, as well as the strong separation of
the more 𝑡𝑡-like DS sample from the nominal DR sample. Best training is achieved with a comparably
low learning rate of ℓ = 0.05 but high lambda 𝜆 = 0.5. The loss curves and ROC curve are shown
in Figure 6.1. Both networks appear to be training as expected. The training is cut off around 550
epochs by early stopping to avoid a significant reduction in performance caused by a dominating
adversary. The ROC curve shows decent performance of the discriminator training and no significant
overtraining. Final hyperparameter values are shown in Table 6.1. Note that the optimiser settings and
epoch in the discriminator and adversary columns refer to the values used in pretraining.

6.1.1 Systematics impact

Figure 6.2 shows the network response for each sample, with and without active adversary. Both
signal and background are well behaved. The effect of the DS sample being more 𝑡𝑡-like is clearly
visible in the ratio plot, as the event fraction of 𝑡𝑊sys to 𝑡𝑊nom is tilting heavily towards lower network
responses. The shape of network response clearly changes when turning on the adversary, however the
ratio plot does not show any improvement of systematics impact. The exact reason for this is unclear,
further tuning in this region may improve this, but it is also possible that the topology of the 2j2b
region is not well suited for this particular approach.

51

Chapter 6 Results

(a) (b)

Figure 6.1: (a) Loss curves, (b) ROC curve for the best training of the DR/DS systematic in the 2j2b region

Discriminator Adversary Combined
Layers 5 4
Nodes 128 128
Epochs 10 10 ≈ 550
Optimiser SGD SGD SGD
Learning rate 0.2 0.01 0.05
Momentum 0.8 0.8 0.8
Activation ReLU ReLU ReLU
Input dropout 0.1
Dropout 0.3 0.3
𝜆 0.01

Table 6.1: Final values for hyperparameters for the DR/DS systematic in the 2j2b region

(a) (b)

Figure 6.2: Separation of 𝑡𝑊 and 𝑡𝑡 network response and ratio plot of nominal and systematic sample responses,
training with the DR/DS systematic in the 2j2b region: (a) with adversary, (b) without adversary

52

6.2 ANN training with DR/DS systematic in the 1j1b region

6.2 ANN training with DR/DS systematic in the 1j1b region

1j1b is the main signal region, so significantly more 𝑡𝑊 data is expected compared to the 2j2b region,
while the amount of 𝑡𝑡 data should be lower. A consequence of this is that the impact of the DR/DS
systematic in this region is much lower. It is not clear though how this would affect ANN training.
During the optimisation process, it has been observed that this region is significantly less stable and
hyperparameters are more difficult to optimise. A good configuration can be found for a learning rate
of ℓ = 0.2 and 𝜆 = 0.05 as well as additional parameters shown in Table 6.2. ROC and loss curves can
be seen in Figure 6.3. All loss curves look very good and smooth for all networks. After about 600
epochs it can be seen that the early stopping algorithm stops the training due to the classifier validation
loss no longer improving. This fairly long training time leads to a good AUC value for 0.65. The ROC
curve is also smooth and shows no potential issues.

(a) (b)

Figure 6.3: (a) Loss curves, (b) ROC curve for the best training of the DR/DS systematic in the 1j1b region

Discriminator Adversary Combined
Layers 5 4
Nodes 128 128
Epochs 10 10 ≈ 590
Optimiser SGD SGD SGD
Learning rate 0.2 0.01 0.2
Momentum 0.8 0.8 0.8
Activation ReLU ReLU ReLU
Input dropout 0.1
Dropout 0.3 0.3
𝜆 0.05

Table 6.2: Final values for hyperparameters for the DR/DS systematic in the 1j1b region

53

Chapter 6 Results

6.2.1 Systematics impact

The separation of 𝑡𝑊 and 𝑡𝑡 samples including the 𝑡𝑊sys sample alongside with the ratio plot is shown
in 6.4. A significant change of shape is visible and the AUC value worsens as the adversary is turned
on. However, as the ratio plot shows, the ratio of 𝑡𝑊sys to 𝑡𝑊nom is visibly reduced. The total difference
between bins

∑
bins |𝑡𝑊sys − 𝑡𝑊nom | is reduced by about 20%, suggesting that the impact of the DR/DS

systematic uncertainty is reduced. It is unclear however if the reduction of AUC value compared to
regular training is worth it for this amount of improvement.

(a) (b)

Figure 6.4: Separation of 𝑡𝑊 and 𝑡𝑡 network response and ratio plot of nominal and systematic responses in the
1j1b region with DR/DS systematic: (a) with adversary, (b) without adversary

6.3 ANN training with PS systematic in the 1j1b region

The PS systematic is interesting compared to DR/DS due to it affecting both the 𝑡𝑊 and 𝑡𝑡 samples.
Network training behaves similarly to DR/DS in the 1j1b region once a stable configuration of
hyperparameters is found with ℓ = 0.05 and 𝜆 = 0.1. ROC and loss curves for this configuration
can be seen in Figure 6.5. All three loss curves behave as desired with the classifier learning well,
while the adversary worsens over time. There may be a small amount of overtraining in the adversary,
however it does not become problematic by the time the training is stopped around 210 epochs. The
ROC curve also looks as expected and no overtraining in the classifier is visible.

6.3.1 Systematics impact

The separation and ratio plot is shown in Figure 6.6. The worse separation with the adversary turned
on is clearly visible with the large 𝑡𝑡 peak around 0.2 missing completely. The ratio plot shows no
improvement of the systematic with the 𝑡𝑡 sample, however for the 𝑡𝑊 sample the improvement in
network response to nominal and systematic samples is clearly visible.

54

6.3 ANN training with PS systematic in the 1j1b region

(a) (b)

Figure 6.5: (a) Loss curves, (b) ROC curve for the best training of the PS systematic in the 1j1b region

Discriminator Adversary Combined
Layers 5 4
Nodes 128 128
Epochs 10 10 ≈ 210
Optimiser SGD SGD SGD
Learning rate 0.2 0.01 0.05
Momentum 0.8 0.8 0.8
Activation ReLU ReLU ReLU
Input dropout 0.1
Dropout 0.3 0.3
𝜆 0.1

Table 6.3: Final values for hyperparameters for the PS systematic in the 1j1b region

(a) (b)

Figure 6.6: Separation of 𝑡𝑊 and 𝑡𝑡 network response and ratio plot of nominal and systematic responses in the
1j1b region with PS systematic: (a) with adversary, (b) without adversary

55

CHAPTER 7

Conclusion

This work focused on improving on some major issues present with the adversarial neural network in
the 𝑡𝑊 dilepton first tried in [60]. The issues included the very long training time and the inherent
instability of the network. In addition to dealing with these issues, the network was tested with an
additional region and systematic uncertainty.

The runtime was successfully decreased using several techniques. The implementation of the
ANN was optimised and additional tools were used to get the maximum available performance and
make efficient use of training steps. An optimal, increased batch size was found to make more use
of hardware capabilities. The largest improvement was achieved by using a GPU for the training
process and further optimising batch size for a peak performance of about 1 400 epochs/hour. This
lowered the total training time from 20 hours to 20–40 minutes, despite using about three times as
much training data. These massive improvements in runtime make further studying of this network
reasonably possible, as the time and computing resources required to conduct many training runs is no
longer crippling.

Training was performed for three setups: The DR/DS systematic uncertainty was trained in the
1j1b and 2j2b regions. Additionally, the parton showering and hadronisation systematic uncertainty,
which applies to both signal and background samples, was trained in the 1j1b region.

Concerns about the inherent instability of this network structure could not be dispelled. With the
additional performance however, a somewhat stable configuration with desired behaviour of each
network was found for all regions. A strong equilibrium between classifier and adversary networks
could not be found. It appears that the adversary loss will always accelerate over time, so the use of
early stopping is crucial to achieve a reasonable result. The classifier could consistently be observed to
perform worse if the adversary was turned on. This is a behaviour expected as the classifier becomes
more robust.

In the 1j1b region a reduction in the difference of network response to nominal and systematic 𝑡𝑊
was found for both tested systematics. However, no difference was found for the 𝑡𝑊 sample in the
2j2b region, as well as the 𝑡𝑡 sample when training with the parton showering systematic. Further
work will however be necessary to judge whether these reductions in systematic dependency of the
network output can outweigh the reduced overall separation between 𝑡𝑊 and 𝑡𝑡.

With the improved performance additional aspects of the network may be available to be tuned now,
such as finding an optimal set of variables for this ANN. However, the limited availability of GPU
resources still has to be considered.

57

Chapter 7 Conclusion

This network remains an interesting technique that could improve the 𝑡𝑊 analysis in the future.
As computing resources increase and particle physicists strive for more powerful machine learning
methods, adversarial networks have the potential to become an important tool for advanced data
analysis.

58

Bibliography

[1] P. O’Grady, Thales of Miletus, url: https://www.iep.utm.edu/ (visited on 16/11/2020)
(cit. on p. 1).

[2] R. S. Westfall, Isaac Newton,
url: https://www.britannica.com/biography/Isaac-Newton (visited on 16/11/2020)
(cit. on p. 1).

[3] C. Domb, James Clerk Maxwell,
url: https://www.britannica.com/biography/James-Clerk-Maxwell (visited on
16/11/2020) (cit. on p. 1).

[4] The Standard Model, (2012), url: http://cds.cern.ch/record/1997201
(cit. on pp. 1, 3).

[5] MissMJ, Standard Model of Elementary Particles, [Online; accessed October 2020], 2006,
url: https://commons.wikimedia.org/wiki/File:
Standard_Model_of_Elementary_Particles.svg (cit. on p. 4).

[6] D. H. Perkins, Introduction to High Energy Physics, 4th ed., Addison-Wesley, 2000
(cit. on p. 4).

[7] M. T. et al, Review of Particle Physics, Phys. Rev. D 98 (3 2018) 030001,
url: https://link.aps.org/doi/10.1103/PhysRevD.98.030001
(cit. on pp. 5, 12, 13).

[8] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons,
Phys. Rev. Lett. 13 (16 1964) 508 (cit. on p. 5).

[9] The Large Hadron Collider, (2014), url: http://cds.cern.ch/record/1998498
(cit. on p. 5).

[10] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
Journal of Instrumentation 3 (2008) S08003 (cit. on pp. 6–9).

[11] The CMS Collaboration, The CMS experiment at the CERN LHC,
Journal of Instrumentation 3 (2008) S08004 (cit. on p. 6).

[12] The ALICE Collaboration, The ALICE experiment at the CERN LHC,
Journal of Instrumentation 3 (2008) S08002 (cit. on p. 6).

[13] The LHCb Collaboration, The LHCb Detector at the LHC,
Journal of Instrumentation 3 (2008) S08005 (cit. on p. 6).

[14] J. Haffner, The CERN accelerator complex. Complexe des accélérateurs du CERN,
(2013), General Photo, url: http://cds.cern.ch/record/1621894 (cit. on p. 6).

59

https://www.iep.utm.edu/
https://www.britannica.com/biography/Isaac-Newton
https://www.britannica.com/biography/James-Clerk-Maxwell
http://cds.cern.ch/record/1997201
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://cds.cern.ch/record/1998498
http://dx.doi.org/10.1088/1748-0221/3/08/s08003
http://dx.doi.org/10.1088/1748-0221/3/08/s08004
http://dx.doi.org/10.1088/1748-0221/3/08/s08002
http://dx.doi.org/10.1088/1748-0221/3/08/s08005
http://cds.cern.ch/record/1621894

Bibliography

[15] “LHC Guide”, 2017, url: http://cds.cern.ch/record/2255762 (cit. on p. 6).

[16] ATLAS Outreach,
“ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC”,
2010, url: https://cds.cern.ch/record/1457044 (cit. on pp. 8, 10).

[17] C. Grupen and B. A. Shwartz, Particle Detectors, 2nd ed., Cambridge University Press, 2008
(cit. on p. 8).

[18] G. Ripellino, The alignment of the ATLAS Inner Detector in Run 2,
tech. rep. ATL-INDET-PROC-2016-003, CERN, 2016,
url: https://cds.cern.ch/record/2213441 (cit. on p. 8).

[19] ATLAS Collaboration, ed.,
ATLAS detector and physics performance: Technical Design Report, 1,
Technical Design Report ATLAS, 1999, url: https://cds.cern.ch/record/391176
(cit. on p. 9).

[20] A. Ruiz-Martinez and A. Collaboration, The Run-2 ATLAS Trigger System,
tech. rep. ATL-DAQ-PROC-2016-003, CERN, 2016,
url: https://cds.cern.ch/record/2133909 (cit. on p. 10).

[21] J. Pequenao and P. Schaffner,
“How ATLAS detects particles: diagram of particle paths in the detector”, 2013,
url: https://cds.cern.ch/record/1505342 (cit. on p. 11).

[22] M. Aaboud et al., Performance of the ATLAS Track Reconstruction Algorithms in Dense
Environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673, arXiv: 1704.07983 [hep-ex]
(cit. on p. 10).

[23] M. Aaboud et al., Reconstruction of primary vertices at the ATLAS experiment in Run 1
proton–proton collisions at the LHC, Eur. Phys. J. C 77 (2017) 332,
arXiv: 1611.10235 [physics.ins-det] (cit. on p. 10).

[24] G. Aad et al.,
Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1,
Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex] (cit. on pp. 10, 11).

[25] G. Aad et al., Muon reconstruction performance of the ATLAS detector in proton–proton
collision data at

√
𝑠 =13 TeV, Eur. Phys. J. C 76 (2016) 292, arXiv: 1603.05598 [hep-ex]

(cit. on pp. 10, 11).

[26] M. Aaboud et al., Electron reconstruction and identification in the ATLAS experiment using the
2015 and 2016 LHC proton-proton collision data at

√
𝑠 = 13 TeV,

Eur. Phys. J. C 79 (2019) 639, arXiv: 1902.04655 [physics.ins-det] (cit. on p. 10).

[27] M. Cacciari, G. P. Salam and G. Soyez, The anti-𝑘𝑡 jet clustering algorithm,
JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph] (cit. on p. 11).

[28] Pile-up subtraction and suppression for jets in ATLAS, tech. rep. ATLAS-CONF-2013-083,
CERN, 2013, url: https://cds.cern.ch/record/1570994 (cit. on p. 11).

[29] Optimisation of the ATLAS 𝑏-tagging performance for the 2016 LHC Run, (2016)
(cit. on p. 11).

60

http://cds.cern.ch/record/2255762
https://cds.cern.ch/record/1457044
https://cds.cern.ch/record/2213441
https://cds.cern.ch/record/391176
https://cds.cern.ch/record/2133909
https://cds.cern.ch/record/1505342
http://dx.doi.org/10.1140/epjc/s10052-017-5225-7
https://arxiv.org/abs/1704.07983
http://dx.doi.org/10.1140/epjc/s10052-017-4887-5
https://arxiv.org/abs/1611.10235
http://dx.doi.org/10.1140/epjc/s10052-017-5004-5
https://arxiv.org/abs/1603.02934
http://dx.doi.org/10.1140/epjc/s10052-016-4120-y
https://arxiv.org/abs/1603.05598
http://dx.doi.org/10.1140/epjc/s10052-019-7140-6
https://arxiv.org/abs/1902.04655
http://dx.doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://cds.cern.ch/record/1570994

[30] M. Aaboud et al., Performance of missing transverse momentum reconstruction with the
ATLAS detector using proton-proton collisions at

√
𝑠 = 13 TeV, Eur. Phys. J. C 78 (2018) 903,

arXiv: 1802.08168 [hep-ex] (cit. on p. 12).

[31] F. Abe et al.,
Observation of Top Quark Production in pp Collisions with the CDF Detector at Fermilab,
Phys. Rev. Lett. 74 (1995) 2626, arXiv: hep-ex/9503002 [hep-ex] (cit. on p. 12).

[32] S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995) 2632,
arXiv: hep-ex/9503003 [hep-ex] (cit. on p. 12).

[33] D. Collaboration, Useful Diagrams of Top Signals and Backgrounds,
url: https://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_
feynman_diagrams.html (visited on 14/10/2020) (cit. on p. 12).

[34] NLO single-top channel cross sections,
url: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec
(cit. on p. 13).

[35] M. H. Seymour and M. Marx, “Monte Carlo Event Generators”,
69th Scottish Universities Summer School in Physics: LHC Physics, 2013 287,
arXiv: 1304.6677 [hep-ph] (cit. on p. 15).

[36] S. Höche, Introduction to parton-shower event generators, 2015,
arXiv: 1411.4085 [hep-ph] (cit. on p. 16).

[37] G. Aad et al., The ATLAS Simulation Infrastructure,
The European Physical Journal C 70 (2010) 823, issn: 1434-6052,
url: http://dx.doi.org/10.1140/epjc/s10052-010-1429-9 (cit. on p. 15).

[38] C. Oleari, The POWHEG BOX,
Nuclear Physics B - Proceedings Supplements 205-206 (2010) 36, issn: 0920-5632,
url: http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.016 (cit. on p. 16).

[39] T. Sjöstrand, The Pythia event generator: Past, present and future,
Computer Physics Communications 246 (2020) 106910, issn: 0010-4655,
url: http://dx.doi.org/10.1016/j.cpc.2019.106910 (cit. on p. 16).

[40] S. Agostinelli et al., Geant4—a simulation toolkit,
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 506 (2003) 250, issn: 0168-9002 (cit. on p. 16).

[41] C. D. White et al., Isolating Wt production at the LHC, JHEP 11 (2009) 074,
arXiv: 0908.0631 [hep-ph] (cit. on p. 16).

[42] The Herwig Event Generator, url: https://herwig.hepforge.org/ (cit. on p. 17).

[43] P. A. Freiberger and M. R. Swaine, ENIAC,
url: https://www.britannica.com/technology/ENIAC (visited on 23/10/2020)
(cit. on p. 19).

[44] K. Albertsson et al., Machine Learning in High Energy Physics Community White Paper,
J. Phys. Conf. Ser. 1085 (2018) 022008, arXiv: 1807.02876 [physics.comp-ph]
(cit. on p. 19).

61

http://dx.doi.org/10.1140/epjc/s10052-018-6288-9
https://arxiv.org/abs/1802.08168
http://dx.doi.org/10.1103/PhysRevLett.74.2626
https://arxiv.org/abs/hep-ex/9503002
http://dx.doi.org/10.1103/PhysRevLett.74.2632
https://arxiv.org/abs/hep-ex/9503003
https://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_feynman_diagrams.html
https://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_feynman_diagrams.html
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec
https://arxiv.org/abs/1304.6677
https://arxiv.org/abs/1411.4085
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.016
http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.016
http://dx.doi.org/10.1016/j.cpc.2019.106910
http://dx.doi.org/10.1016/j.cpc.2019.106910
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1126-6708/2009/11/074
https://arxiv.org/abs/0908.0631
https://herwig.hepforge.org/
https://www.britannica.com/technology/ENIAC
http://dx.doi.org/10.1088/1742-6596/1085/2/022008
https://arxiv.org/abs/1807.02876

Bibliography

[45] D.-A. Clevert, T. Unterthiner and S. Hochreiter,
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), 2016,
arXiv: 1511.07289 [cs.LG] (cit. on p. 22).

[46] I. Sutskever et al., “On the importance of initialization and momentum in deep learning”,
vol. 28, Proceeding of Machine Learning Research 3, PMLR, 2013 1139 (cit. on p. 24).

[47] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2017,
arXiv: 1412.6980 [cs.LG] (cit. on p. 24).

[48] X. Glorot and Y. Bengio,
Understanding the difficulty of training deep feedforward neural networks,
Journal of Machine Learning Research - Proceedings Track 9 (2010) 249 (cit. on p. 25).

[49] Chabacano, Overfitting, [Online; accessed October 2020], 2008,
url: https://commons.wikimedia.org/wiki/File:Overfitting.svg (cit. on p. 25).

[50] N. Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
Journal of Machine Learning Research 15 (2014) 1929,
url: http://jmlr.org/papers/v15/srivastava14a.html (cit. on p. 26).

[51] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, (2015), arXiv: 1502.03167 [cs.LG] (cit. on p. 26).

[52] tf.keras.callbacks.EarlyStopping, url: https:
//www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
(visited on 03/11/2020) (cit. on p. 27).

[53] Early stopping, url: https://stanford.edu/~shervine/teaching/cs-
230/cheatsheet-deep-learning-tips-and-tricks (visited on 15/11/2020)
(cit. on p. 27).

[54] T. Fawcett, Introduction to ROC analysis, Pattern Recognition Letters 27 (2006) 861
(cit. on p. 28).

[55] I. Goodfellow et al., “Generative Adversarial Nets”,
Advances in Neural Information Processing Systems 27, ed. by Z. Ghahramani et al.,
Curran Associates, Inc., 2014 2672 (cit. on p. 28).

[56] G. Louppe, M. Kagan and K. Cranmer, “Learning to Pivot with Adversarial Networks”,
Advances in Neural Information Processing Systems 30, ed. by I. Guyon et al.,
Curran Associates, Inc., 2017 981 (cit. on p. 29).

[57] T. Chen, Introduction to Boosted Trees (cit. on p. 31).

[58] K. D. Finelli et al., Measurement of the cross-section for the production of a W boson in
association with a top quark at 13TeV, tech. rep. ATL-COM-PHYS-2019-222, CERN, 2019,
url: https://cds.cern.ch/record/2667560 (cit. on pp. 32, 35).

[59] N. Boeing, Comparison of Multivariate Techniques in the Wt Single Top-Quark Production
Channel at ATLAS, 2017 (cit. on p. 32).

[60] C. Kirfel, Hyperparameter Optimisation of an Adversarial Neural Network in the tW channel at
13 TeV with ATLAS, 2019 (cit. on pp. 31, 35, 38, 45, 57).

[61] F. Chollet et al., Keras, https://keras.io, 2015 (cit. on p. 33).

62

https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1412.6980
https://commons.wikimedia.org/wiki/File:Overfitting.svg
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1502.03167
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
http://dx.doi.org/10.1016/j.patrec.2005.10.010
https://cds.cern.ch/record/2667560
https://keras.io

[62] Martin Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,
2015, url: https://www.tensorflow.org/ (cit. on p. 33).

[63] F. Chollet et al., Keras Functional API,
url: https://keras.io/guides/functional_api/ (cit. on p. 33).

[64] nVidia, CUDA Toolkit Documentation, [Online; accessed November 2020],
url: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
(cit. on pp. 45, 46).

[65] GPU Support, [Online; accessed November 2020],
url: https://www.tensorflow.org/install/gpu (cit. on p. 45).

63

https://www.tensorflow.org/
https://keras.io/guides/functional_api/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.tensorflow.org/install/gpu

APPENDIX A

Datasets

The full set of datasets is listed here.

user.ddavis.mc16_13TeV.410646.PhPy8EG_Wt_DR_t.SGTOP1.e6552_a875_r9364_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410646.PhPy8EG_Wt_DR_t.SGTOP1.e6552_a875_r10724_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410646.PhPy8EG_Wt_DR_t.SGTOP1.e6552_a875_r10201_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410647.PhPy8EG_Wt_DR_tbar.SGTOP1.e6552_a875_r9364_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410647.PhPy8EG_Wt_DR_tbar.SGTOP1.e6552_a875_r10724_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410647.PhPy8EG_Wt_DR_tbar.SGTOP1.e6552_a875_r10201_p3832.ll.v29.20

Table A.1: List of datasets used for the 𝑡𝑊nom sample

user.ddavis.mc16_13TeV.410656.PhPy8EG_Wt_DS_2l_t.SGTOP1.e6615_s3126_r9364_p3832.ll.v29.0

user.dfrizzel.mc16_13TeV.410656.PhPy8EG_Wt_DS_2l_t.SGTOP1.e6615_s3126_r10201_p3832.ll.v29.0

user.ddavis.mc16_13TeV.410656.PhPy8EG_Wt_DS_2l_t.SGTOP1.e6615_s3126_r10724_p3629.ll.v29.SP09

user.ddavis.mc16_13TeV.410657.PhPy8EG_Wt_DS_2l_tbar.SGTOP1.e6615_s3126_r9364_p3832.ll.v29.0

user.ddavis.mc16_13TeV.410657.PhPy8EG_Wt_DS_2l_tbar.SGTOP1.e6615_s3126_r10201_p3832.ll.v29.1

user.ddavis.mc16_13TeV.410657.PhPy8EG_Wt_DS_2l_tbar.SGTOP1.e6615_s3126_r10724_p3832.ll.v29.1

Table A.2: List of datasets used for the 𝑡𝑊sys (DR/DS) sample

user.ddavis.mc16_13TeV.411038.PhH7EG_Wt_DR_2l_t.SGTOP1.e6702_a875_r9364_p3832.ll.v29.20

user.ddavis.mc16_13TeV.411038.PhH7EG_Wt_DR_2l_t.SGTOP1.e6702_a875_r10724_p3832.ll.v29.20

user.ddavis.mc16_13TeV.411038.PhH7EG_Wt_DR_2l_t.SGTOP1.e6702_a875_r10201_p3832.ll.v29.20

user.ddavis.mc16_13TeV.411039.PhH7EG_Wt_DR_2l_tbar.SGTOP1.e6702_a875_r9364_p3832.ll.v29.20

user.ddavis.mc16_13TeV.411039.PhH7EG_Wt_DR_2l_tbar.SGTOP1.e6702_a875_r10724_p3832.ll.v29.20

user.ddavis.mc16_13TeV.411039.PhH7EG_Wt_DR_2l_tbar.SGTOP1.e6702_a875_r10201_p3832.ll.v29.20

Table A.3: List of datasets used for the 𝑡𝑊sys (PS) sample

65

Appendix A Datasets

user.ddavis.mc16_13TeV.410472.PhPy8EG_ttbar_hdamp258p75_2l.SGTOP1.e6348_a875_r9364_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410472.PhPy8EG_ttbar_hdamp258p75_2l.SGTOP1.e6348_a875_r10201_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410472.PhPy8EG_ttbar_hdamp258p75_2l.SGTOP1.e6348_a875_r10724_p3832.ll.v29.20

Table A.4: List of datasets used for the 𝑡𝑡nom sample

user.ddavis.mc16_13TeV.410558.PhH7EG_ttbar_hdamp258p75_2l.SGTOP1.e6366_a875_r9364_p3832.ll.v29.20

user.ddavis.mc16_13TeV.410558.PhH7EG_ttbar_hdamp258p75_2l.SGTOP1.e6572_a875_r10201_p3531.ll.v29.20

user.ddavis.mc16_13TeV.410558.PhH7EG_ttbar_hdamp258p75_2l.SGTOP1.e6366_a875_r10724_p3832.ll.v29.20

Table A.5: List of datasets used for the 𝑡𝑡sys (PS) sample

66

List of Figures

2.1 The Standard Model of particle physics . 4
2.2 Overview of the LHC complex . 6
2.3 Cut-away view of the ATLAS detector . 7
2.4 Cut-away view of the ATLAS Inner Detector . 8
2.5 Common particle signatures in the ATLAS detector 11
2.6 Feynman diagram of top decay . 12
2.7 Diagrams for LO 𝑡𝑡 production . 13
2.8 Diagrams for LO single top production . 14
2.9 Final state of 𝑡𝑊 dilepton decay . 14
2.10 Overview of a proton-proton collision . 16
2.11 Example diagrams for 𝑡𝑊-𝑡𝑡 interference . 17

3.1 Example of a neural network . 20
3.2 Overview of the perceptron model . 21
3.3 Common activation functions . 22
3.4 Simplified illustration of overfitting . 25
3.5 Effect of dropout on a neural network . 26
3.6 Sketch of early stopping . 27
3.7 Overview of a Generative Adversarial Network . 29
3.8 Sketch of the ANN setup . 30

4.1 Separation of 𝑡𝑊-𝑡𝑡 using a BDT classifier . 32
4.2 Performance comparison of machine learning methods 32
4.3 Training procedure for the ANN . 34
4.4 Example of the ROC curve plot . 36
4.5 Example of loss curves in the ANN . 37
4.6 Example of a separation plot . 37
4.7 Performance with different numbers of nodes . 39
4.8 Losses for Adam optimiser . 39
4.9 ANN training for different learning rates . 40
4.10 Losses with several momenta . 41
4.11 Performance with several activation functions . 41
4.12 Performance with batch normalisation . 42
4.13 Separation for different dropout rates . 42
4.14 Losses with no early stopping applied . 43
4.15 Network behaviour for several values of 𝜆 . 44

67

List of Figures

5.1 Architecture comparison of CPU and GPU . 46
5.2 ANN performance on CPU . 47
5.3 ANN performance on GPU . 48
5.4 Performance comparison of classifier and ANN . 50

6.1 Losses and ROC curve for DR/DS, 2j2b training 52
6.2 Separation for DR/DS, 2j2b training . 52
6.3 Losses and ROC curve for DR/DS, 1j1b training 53
6.4 Separation for DR/DS, 1j1b training . 54
6.5 Losses and ROC curve for PS, 1j1b training . 55
6.6 Separation for PS, 1j1b training . 55

68

List of Tables

4.1 Targets for ANN training . 34
4.2 Variables used in ANN training . 35

6.1 Hyperparameters for DR/DS, 2j2b training . 52
6.2 Hyperparameters for DR/DS, 1j1b training . 53
6.3 Hyperparameters for PS, 1j1b training . 55

A.1 List of datasets used for the 𝑡𝑊nom sample . 65
A.2 List of datasets used for the 𝑡𝑊sys (DR/DS) sample 65
A.3 List of datasets used for the 𝑡𝑊sys (PS) sample . 65
A.4 List of datasets used for the 𝑡𝑡nom sample . 66
A.5 List of datasets used for the 𝑡𝑡sys (PS) sample . 66

69

	1 Introduction
	2 Experimental and Theoretical Background
	2.1 The Standard Model of particle physics
	2.1.1 Matter particles
	2.1.2 Forces and gauge bosons
	2.1.3 The Higgs boson

	2.2 The Large Hadron Collider and the ATLAS detector
	2.2.1 The Large Hadron Collider
	2.2.2 The ATLAS detector

	2.3 Top quark physics
	2.3.1 The top quark
	2.3.2 Top quark production at the LHC
	2.3.3 The tW dilepton channel

	2.4 Monte Carlo simulations
	2.4.1 Systematic uncertainties

	3 Machine Learning with Neural Networks
	3.1 Introduction to machine learning
	3.2 Neural networks
	3.2.1 The perceptron model
	3.2.2 Training the network
	3.2.3 Overfitting and regularisation
	3.2.4 Performance metrics

	3.3 Adversarial neural networks
	3.3.1 Generative Adversarial Networks
	3.3.2 Adversarial neural network as a pivot

	4 Adversarial Neural Network in the tW Dilepton Channel
	4.1 Motivation
	4.2 Tensorflow & Keras
	4.2.1 Network setup
	4.2.2 Network training

	4.3 Monte Carlo samples
	4.4 Variable selection
	4.5 Performance metrics
	4.6 Hyperparameter optimisation
	4.6.1 Random seed
	4.6.2 Nodes & layers
	4.6.3 Initialisers
	4.6.4 Optimiser
	4.6.5 Regularisation
	4.6.6 Lambda

	5 Runtime Optimisation
	5.1 Introduction to CPUs and GPUs
	5.2 Performance metrics & setup
	5.2.1 Batch size

	5.3 Performance on CPU
	5.4 Performance on GPU
	5.5 Miscellaneous improvements
	5.6 Comparison with standard classifier network

	6 Results
	6.1 ANN training with DR/DS systematic in the 2j2b region
	6.1.1 Systematics impact

	6.2 ANN training with DR/DS systematic in the 1j1b region
	6.2.1 Systematics impact

	6.3 ANN training with PS systematic in the 1j1b region
	6.3.1 Systematics impact

	7 Conclusion
	Bibliography
	A Datasets
	List of Figures
	List of Tables

