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CHAPTER 1

Introduction

“The effort to understand the universe is one of the very few things which lifts human life a little above
the level of farce and gives it some of the grace of tragedy.” -- Steven Weinberg

The field of high energy physics tries to understand the nature of the fundamental building blocks
of the Universe and the different interactions that occur between them. The Standard Model of particle
physics and the ΛCDM model of cosmology are the best available theories to describe our universe.
Experiments like the Large Hadron Collider (LHC) and the Planck Mission have confirmed these the-
ories to high degrees of precision. But these theories can only explain 5% [1] of the Universe. The
exact nature of the remaining 95% is still unknown to us. The Standard Model of particle physics along
with Einstein’s theory of General Relativity is an elegant description of the 5% of the ordinary matter
present in our universe. The Standard Model describes the electroweak and strong forces and Generally
Relativity describes gravity. But till now physicists have not found an unified theory to describe these
forces. Unfortunately, the Standard Model of particle physics is not a complete theory. It presents us
with some open questions. One of them is the instability of the mass of the Higgs boson. The loop
corrections to the mass of the Higgs boson are quadratically sensitive to the next energy scale of new
physics. This problem is called the hierarchy problem [2, 3].

The experimentally measured value of the Higgs mass is 125.7 GeV [4, 5] which is clearly lower than
the next energy scale. So there has to be a theoretical solution to this problem. There are lot of theories
that try to solve this problem, but to date physicists haven’t found any experimental evidence of such
theories. In this thesis we conduct a search for particles predicted by two such theories. The corrections
to the Higgs boson mass comes from its interaction with the fermions of the Standard Model. Since
the top-quark, with a mass of 173.2 GeV, is the heaviest fermion of the Standard Model, the major
contributions to these corrections come from the top-quark. We consider an effective field theory which
adds heavier partners to the top and bottom quark which cancel these corrections. In the second effective
field theory we consider, the Higgs boson is assumed to be a composite particle. This model also adds
heavier top and bottom partners to solve the hierarchy problem. We expect these theories to have a mass
hierarchy like the Standard Model. In the Standard Model the bottom-quark is much lighter than the
top-quark. Thus, we expect the heavier partner of bottom-quark to be more accessible to experimental
searches. In this thesis we search for the two bottom partners of the aforementioned theories, b∗ and B′.
We use the proton-proton collision data taken by the ATLAS detector of the Large Hadron Collider for
this search. We use the full dataset taken at a centre-of-mass energy

√
s = 8 TeV in 2012. We perform

this search in the decay channel b∗/B′ → Wt. The different statistical methods used in this search are
presented in this thesis.

The biggest debate in the world of statistics is the validity and accuracy of Bayesian and frequentist
statistical methods. Rather than engaging in this debate by taking sides, physicists have tried to compare
and combine these methods from an unbiased point of view. There are advantages and disadvantages
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Chapter 1 Introduction

of both the methods. Frequentist methods have the advantage that it gets its results from repeatable
unbiased experiments, but the definition of probability is not very clear in frequentist methods. Bayesian
methods help us to incorporate the prior information about our experiments and also Bayesian methods
can use the classical definition of probability. One disadvantage of Bayesian methods is that they can
inject a bias with the prior information. In our analysis we use both frequentist and Bayesian methods.
We use frequentist methods to search for the presence of a signal in our collision data. We use Bayesian
and frequentist methods to set limits on our signal strength. This analysis is under preparation for a
publication from the ATLAS collaboration. As decided there, in this thesis also the Bayesian limit is
quoted as the final result.

In Chapter 2, we introduce some basic concepts of particle physics and describe the Standard Model.
We also present the theoretical motivation behind using our models. In Chapter 3 an overview of the
different components of the ATLAS detector is presented. Chapter 4 illustrates the final states of the
decay modes we consider in our analysis. We also give an overview of the object reconstruction used
in our analysis in this chapter. A detailed description about the statistical methods used in this analysis
is given in Chapter 5. The statistical tools used to implement these methods is described in Chapter 6.
The details of our statistical analysis is presented in Chapter 7. In Chapter 8 we present the results of
our analysis. Finally, we conclude and summarise our findings in Chapter 9.
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CHAPTER 2

Theoretical concepts

“The electron is a theory we use; it is so useful in understanding the way nature works that we can
almost call it real.” -- Richard Feynman

The field of particle physics tries to understand the nature of the electroweak and strong interactions.
The Standard Model of particle physics is to date the best theoretical model to describe these forces,
but unfortunately it is not a complete theory. In this chapter I would first introduce some basic ideas
of particle physics and then go on to describe the details and drawbacks of the Standard Model. In the
last section I would describe some theories which try to solve some of the shortcomings of the Standard
Model.

2.1 Basic terminology in particle physics

Natural units

In most fields of physics the S.I. system of units is used as a measure of the different quantities used.
But in particle physics we use a system of units called natural units to describe the different physical
variables. In this system of units we consider the Planck’s constant, speed of light in vacuum, and
gravitational constant to be one i.e. ~ = c = G = 1, and also define all physical quantities in terms
of units of energy. We use electronvolt (eV) as the fundamental unit. Most particle physics processes
occur at higher energies, thus making MeV or GeV the more commonly used units. Physical quantities
like mass and momenta are written in terms of MeV or GeV.

Physical observables

The goal of any theoretical model is to predict the values of some physical observables which can
be measured to validate the given model. Most particle physics experiments are scattering or decay
experiments. So theoretical models predict the values of physical observables which can be measured
in such experiments.

Cross-section and Luminosity Cross-section is the most crucial observable measured in scattering
experiments. The cross-section of a process, σ, is the effective area where the process takes place.
That gives us a measure of the probability of the occurrence of the given process. It can be computed
theoretically using

σ ∝

∫
|M|2dρ (2.1)
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Chapter 2 Theoretical concepts

where |M|2 is the square of the matrix element of the process and
∫

dρ is the integral over the phase
space. The matrix element |M| gives us a measure of the transition amplitude of the transition from the
initial to final state. The cross-section is associated with the number of events N as following

dN
dt

= σ · L (2.2)

where L is called the instantaneous luminosity and L =
∫
L dt is known as integrated luminosity.

Decay width and branching fraction The particles produced in a scattering experiment decay into
different number of particles through various processes. Suppose a particle decays with a lifetime τ then
the decay width Γ is defined as the reciprocal of the lifetime τ

Γ =
1
τ

(2.3)

Most particles can decay via different processes. Each of the individual processes have a decay width
Γi. Then the total decay width Γtotal and branching fraction Bi for the i-th process can be defined as

Γtotal =
∑

i

Γi (2.4)

Bi =
Γi

Γtotal
(2.5)

Feynman diagrams Richard Feynman formulated a very elegant and simple method of representing
scattering processes and calculating the corresponding matrix element |M| under the domain of per-
turbation theory [6]. Feynman diagrams are space-time diagrams that illustrate the various interactions
between the particles and by using Feynman rules the value of |M| can be calculated from these dia-
grams. We will use two diagrams of the Bhabha (electron-positron) scattering to present some details
about Feynman diagrams. In this thesis we assume that time flows from left to right. In Figures 2.1a

e+

e− e−

e+

γ

(a) s-channel diagram

e− e−

e+ e+

γ

(b) t-channel diagram

Figure 2.1: Feynman diagrams for Bhabha scattering

and 2.1b we have drawn the scattering of e+e− → e+e−. While drawing Feynman diagrams, we represent
incoming particles (anti-particles) by incoming (outgoing) arrows and outgoing particles (anti-particles)
by outgoing (incoming) arrows. The lines between the vertices represent “off-shell” virtual particles.
All physical conservation laws are obeyed at these vertices. Diagrams like 2.1a and 2.1b are called
s-channel and t-channel diagrams respectively. The matrix element |M| ∝ 1/s in s-channel diagrams,
where s is the centre-of-mass energy. s = (pe+ + pe−)2 for Bhabha scattering. In case of t-channel
diagrams, |M| ∝ 1/t, where t = (pA − pC)2 for processes of the form A + B→ C + D. This framework is
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2.2 Standard Model

extremely useful for calculating the theoretical cross-sections and decay rates of complicated physical
processes.

2.2 Standard Model

The discovery of the Higgs boson [4, 5] has made sure that the Standard Model (SM) is the best descrip-
tion of the electroweak and strong interactions. The Standard Model predicts the existence of different
fundamental particles called quarks, leptons, gauge bosons, and the Higgs boson. To our best know-
ledge, quarks and leptons are the most fundamental building blocks of matter. The different gauge
bosons are the force carriers of the electroweak and strong interactions. The Higgs boson helps these
particles to gain mass. An overview of the different particles and the allowed interactions is shown in
the Figure 2.2 All these particles have been experimentally detected. Unfortunately this elegant theoret-
ical model is incomplete. We describe those problems in Section 2.2.5. In this section we describe the
theoretical concepts of Standard Model.

2.2.1 Lagrangian

The Standard Model is a combination of different quantum field theories. Quantum fields are quantities
that assume given values for all points in space-time. In quantum field theories, the quantum fields are
the fundamental quantities and the space-time coordinates are treated as labels. So instead of using the
Lagrangian we use the Lagrangian density. The Lagrangian density L can be written in terms of the
Lagrangian L as

L =

∫
d4x L (2.6)

The quantum field theories that constitute the Standard model are a special type of theory called gauge
theories. These theories have certain gauge symmetries. The simplest example of a gauge symmetry
is the symmetry of Aµ in electromagnetism. The Lagrangian of the Standard Model is invariant under
certain gauge transformations. Because of these symmetries, these theories can be embedded into groups
called Lie groups. The different particles are the irreducible representations of these groups. And the
gauge bosons are the generators of these groups.

Figure 2.2: An overview of the different particles and the allowed interactions of the Standard Model
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Chapter 2 Theoretical concepts

The Standard Model can be represented by a S U(3) × S U(2) × U(1) group . The S U(3) part describes
the strong sector and the S U(2) × U(1) part represents the electroweak sector. The Standard Model
Lagrangian1 L can be written as [7]

L = Lbosons +Lfermions +LYukawa +LHiggs

= (−
1
4

Fa
µνF

aµν) + (iψ̄iγµDµψ
i) + (ψ̄i

LVi jΦψ
j
R + h.c.) + (|DµΦ|

2 − V(Φ))
(2.7)

The first and second part of the equation represents the different interactions between the gauge bosons,
quarks and leptons. In the first term, Fa

µν, the stress-energy tensor, gives us a measure of the self-
interactions and kinetic energies of the gauge bosons. The second term, the Dirac term, is a measure of
the kinetic energies of the leptons and quarks and their interactions with the gauge bosons. The third
term is the Yukawa term which represents the mass terms for different particles. The last term represents
the contribution from the Higgs field.

2.2.2 Electroweak interactions

The Glashow-Salam-Weinberg theory [8–10] of electroweak interactions is an unified theory describing
both electromagnetic and weak interactions. This theory was a further development of the theory of
quantum electrodynamics [11–13] developed by Feynman, Schwinger, and Tomonoga. This theory
describes the leptons, W and Z bosons. The Glashow-Salam-Weinberg theory can be embedded into a
S U(2)L × U(1)Y group. The subscript L denotes that the left-handed particles described by this theory
can be embedded into the doublet representation of a S U(2) group. The electroweak theory is a parity
violating theory. The subscript Y denotes hypercharge, a linear combination of the electric charge and
isospin of the different particles. The different left-handed leptons can be written as doublets and the
right-handed leptons can be written as singlets of this group.

ψL =

(
νe

e

)
L
,

(
νµ
µ

)
L
,

(
ντ
τ

)
L

(2.8)

ψR = eR, µR, τR (2.9)

eL,R, µL,R, and τL,R denote the left-handed and right-handed electron, muon and tau respectively. νe,
νµ, and ντ are the electron, muon and tau neutrinos respectively. The electroweak theory being a parity
violating theory doesn’t contain right-handed neutrinos. There are four vector fields W1,2,3

µ and Bµ which
contribute to the electroweak interactions in the first and second term of (2.7). A linear combination
of W1

µ and W2
µ describe the two charged W bosons and two different linear combinations of W3

µ and Bµ
represent the two neutral bosons, the Z boson and the photon.

W±µ =

√
1
2

(W1
µ + iW2

µ) (2.10)

Aµ = Bµcos θW + W3
µcos θW (2.11)

Zµ = −Bµcos θW + W3
µcos θW (2.12)

tan θW =
g′

g
(2.13)

1 From here on Lagrangian means Lagrangian density
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2.2 Standard Model

where cos θW us called the Weinberg angle and it associates the respective coupling strengths of W i
µ and

Bµ, g and g′, and the charge via the relation (2.13). These particles gain mass via the Higgs mechanism,
the details of which will be given later.

2.2.3 Strong interactions

Quantum chromodynamics

Quantum chromodynamics (QCD) [14] is the theory of the strong interactions based on a gauge sym-
metry. The quarks and the eight gluons predicted by this theory can be represented by the S U(3)c group.
The quarks and anti-quarks can be represented as colour triplets. There are three types of colour charges,
named as red, green and blue. The eight gluons are the generators of the S U(3) group which are the
gauge bosons mediating the strong interaction. These gluons also carry colour charges and thus they
interact with each other. They contribute to the strong interactions in the first and second term of (2.7).
There are three generations of quarks, each generation having two quarks. The six quarks, up, down,
charm, strange, top, and bottom can be divided into three generations in the following way.(

u
d

)
,

(
c
s

)
,

(
t
b

)
(2.14)

Asymptotic freedom The existence of self-interaction between gluons leads to an “anti-screening”
effect. This effect is larger than the screening due to virtual gauge bosons by a factor of 11Nc − 3N f ,
where Nc and N f are the number of colours and flavours of the interacting quarks respectively. Due to
this, the strong coupling constant, αs, decreases with increasing energies or decreasing distances.

αs(Q) ∝
1

ln( Q
Λ

)
(2.15)

This implies that at distances larger than ∼ 1
Λ

the quarks interact strongly [15]. Experiments show that
these distances are close to the sizes of light hadrons. So beyond these distances the quarks are not free
and they produce different bound states called mesons (quark anti-quark pair) and baryons (three quarks
or anti-quarks). This phenomenon is called confinement. Since the strong coupling is weak at distances
< 1

Λ
the quarks are asymptotically free inside the hadrons. This feature of the strong force is known as

asymptotic freedom [16].

Partons In the Large Hadron Collider beams of protons are collided together. Due to the asymptotic
freedom of quarks, the inelastic scattering between protons can be thought of as collision between
different constituents of the proton. The different quarks and gluons that make up a proton are called
partons. When two protons scatter the partons carry a fraction of its momentum denoted by x =

pparton
pproton

.
In that case we can write the scattering cross-section as

σ(p1 p2 → X) =

∫ 1

0

∫ 1

0

∑
i, j=q,q̄,g

fi(xi) f j(x j) σi, j(i j→ X) (2.16)

where fi(xi) and f j(x j) are the respective parton density functions (PDF) which describe the probabilities
of finding the partons with momentum fraction xi inside the proton. Hereσi, j(i j→ X) denotes the cross-
section of the different parton scattering processes. These individual partonic cross-sections have been
extensively measured in experiments as they cannot be calculated by theory. Collaborations like CTEQ

7



Chapter 2 Theoretical concepts

use this data and perform global fits to it to find the precise values of PDFs which can be used for
cross-section calculation. The values of the PDFs are used as inputs in our experiments. There is a
factorisation scheme which decides which partons contribute to the scattering cross-section of a given
process.

2.2.4 Higgs mechanism

The Higgs mechanism [17, 18] is a way of giving masses to the different particles of the Standard Model
via “spontaneous symmetry breaking”. We add an extra term to the Lagrangian LHiggs given by

LHiggs = |DµΦ|
2 − V(Φ)

= |DµΦ|
2 + µ2Φ†Φ − λ(Φ†Φ)2 (2.17)

where Φ is a complex doublet. The minimum of this potential is at

v =

(
µ2

λ

)1/2

(2.18)

Subsequently, the Higgs field acquires a vacuum expectation
(
0
v

)
value (vev). If we expand the Lag-

rangian around this vev the vector bosons gather a mass term. In addition to this we get some mass
terms for a new scalar particle φ called the Higgs boson. The mass of the gauge bosons and the Higgs
boson are given by

mW = g ·
v

2
(2.19)

mZ =

√
g2 + g′2 ·

v

2
(2.20)

mφ =
√

2λ · v (2.21)

where v ≈ 246 GeV [19]. The measured properties of the Higgs boson, discovered by ATLAS and CMS
in 2012 [4, 5] imply the fact that this Higgs boson is most probably the Standard Model Higgs boson.

Yukawa mass terms The third term in (2.7) contains the Yukawa mass terms for the quarks and
leptons. This term describes the interaction of the Higgs boson with all the fermions of the Standard
Model. The gauge invariance condition of the Standard Model only allows these kind of terms. We
replace the Higgs field by its vev to get the corresponding mass terms.

ml,q =
1
√

2
λl,q · v (2.22)

The term Vi j in (2.7) represents the quark-mixing matrix. It is known as the Cabibo-Kobayashi-Maskawa
(CKM) matrix [20, 21]. The elements of this matrix represent the strength of the interactions between
the different quarks. The experimental values are such that the diagonal elements of the CKM matrix
are close to unity and the off-diagonal terms are one or two orders of magnitude smaller.

8



2.2 Standard Model

2.2.5 Drawbacks of the Standard Model

Although being a fairly complete model, the Standard model has some drawbacks and limitations. The-
orists have suggested many theories which try to solve most of the problems of Standard Model, but
unfortunately there have been no experimental evidence of these theories. Experiments like the Large
Hadron Collider (LHC), Large Underground Xenon (LUX) experiment etc. will be looking for evid-
ences of such theories in the near-future. Some of the major drawbacks of the Standard Model are:

• Hierachy problem The particles of the Standard Model gain their masses via their interaction
with the Higgs boson. However the one-loop corrections to the Higgs-boson mass arising from
the SM fermions are quadratically sensitive to Λ, the next scale of new physics. The top-quark
being the heaviest fermion in the SM, contributes most to these corrections. This problem is
known as the hierachy problem [2, 3].

δm2
H ∝ |yt|

2Λ2 + c lnΛ (2.23)

yt being the Yukawa coupling between the top-quark and the Higgs boson. There are theories
which try to cancel out these corrections, some of which will be discussed later. Since the experi-
mental value of the Higgs mass is 125.7 GeV, these corrections have to be cancelled theoretically.
energy scales.

• Matter-antimatter asymmetry The Standard Model doesn’t predict any matter-antimatter asym-
metry. In our universe the ratio of antimatter to matter is negligibly small. To achieve this asym-
metry theories have to be CP (charge-parity) violating and they also have to violate baryon and
lepton number conservation. Theories like leptogenesis try to achieve these conditions, but these
theories are experimentally constrained.

• Dark matter and energy The Standard Model is a theory that can only describe ∼ 5% of the Uni-
verse. It cannot accommodate any description about dark matter and energy. Calculations from
the relic densities of cold dark matter suggest that they should interact at the weak scale. Some
extensions of the SM predict very good candidates, but they haven’t been detected experimentally.

• Naturalness problem and free parameters The different parameters of the Standard Model have
values ranging across six orders of magnitude. The SM has 19 free parameters, the values of
which are experimentally determined. There is no theoretical justification of these features of the
SM. The hierarchy of the different parameters is also a strong hint of the fact that there might be
new physics at the TeV scale.

2.2.6 Theoretical solutions

There are a lot of Beyond the Standard Model (BSM) theories which try to address some of the issues
mentioned above. Since Hierarchy problem is one of the major drawbacks of the SM, we will discuss
some theories which have predicted some solutions to it. In this thesis we have tried to find experimental
evidence for some of these theories.

Supersymmetry Supersymmetry (SUSY) [22] is a class of theories that solves some of the draw-
backs of the Standard Model. It solves the hierarchy problem by adding bosonic partners to the different
fermions of the SM and vice-versa. This ensures that the quadratic term mentioned in (2.23) gets can-
celled by the corresponding bosonic partners of the fermions. These theories also predict promising
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candidates for dark matter. There are different supersymmetric theories like MSSM, CMSSM, NMSSM
etc. These theories have different assumptions, thus having different properties of the predicted particle
spectra. The number of free parameters also vary in each of these theories. The existence of supersym-
metric particles have not been experimentally proved until now. Experimental constraints have been set
on the properties of the supersymmetric particle spectra.

Effective field theories Effective field theories [23] are quantum field theories that are low-energy
approximation of some more general physical theory. Although effective field theories are not exact
theories, but they provide us with prospective solutions to the different problems. In these theories
higher dimensional operators are added to the Standard Model Lagrangian. These terms give rise to
interactions which cancel the quadratic divergences. These theories are valid up to the scale of the more
general theories. Since these broader theories are not known, we are free to choose this scale. We can
use experimental data to see in what energy ranges these theories are valid or not. In this thesis we
search for the existence of new particles predicted by two such effective field theories.

2.3 Vector-like quarks

There is no theoretical threshold on the number of quark generations in nature. Experiments have
excluded the existence of a fourth generation SM-like chiral quark [24], but these experiments do not
set any constraints on models of vector-like quarks (VLQ), fermions that can have equal left and right-
handed couplings to the W-boson. These particles help us to solve the Higgs mass hierarchy problem.
Theories like SUSY [25], composite Higgs models [26, 27], little Higgs models [28] etc. predict these
VLQs, thus making them an exciting tool for looking for new physics. In this thesis we consider two
VLQ models, b∗ and B′, the first being predicted by an effective field theory and the second by an
effective composite Higgs model.

2.3.1 b∗

Effective field theories which try to solve the hierarchy problem generally add an extra top-quark doublet
which can cancel the quadratic divergences. So in these models we have a lighter bottom-quark partner
which is more accessible to experiments. Here an effective field theory is considered where b∗, a down-
type quark, [29] is the only state below the energy cutoff scale of the theory. In addition to being a VLQ,
the production of b∗ occurs through an anomalous chromomagnetic coupling. We consider the decay
of b∗ into a W boson and a top-quark. The Feynman diagram of this process is shown in Figure (2.3).
The bgb∗ coupling is a flavour changing vertex, but since flavour changing neutral currents (FCNC) are
assumed to be absent in this theory, the production cross-section is FCNC suppressed. The decay width
is proportional to f 2

g and ( f 2
L + f 2

R ), where we assume fg = fL = fR = 1. Here fg quantifies the bgb∗

coupling and fL and fR denotes the coupling of b∗ with the W boson.

2.3.2 B′

B′ is a VLQ predicted by a composite Higgs model [27, 30]. In such effective theories the electroweak
symmetry breaking is mediated by a strong-interaction-like dynamics. The breaking is achieved via
couplings between elementary and composite fermions. This model is derived from a TS-10 model
(two-site), the two sites denoted by the composite and the elementary sector. The composite fermions
are embedded in a 10-dimensional representation of S 0(5) × U(1)X which decomposes as S U(2)L ×

S U(2)R × U(1)X . The elementary sector is written as the SM-group without the Higgs boson. B′ can
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b

g

b∗
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W

Figure 2.3: Feynman diagram for pp→ b∗ → Wt

decay into Zb, Hb (H is the SM Higgs), and Wt with branching fractions having a ratio of 2:1:1. Here
we consider a t-channel production via a Z boson decaying to Wt. The final state also contains an extra
light quark. The Feynman diagram is shown in Figure 2.4. The cross-section is proportional to λ2, λ
being the coupling of B′ to the electroweak sector.

b

q

Z

B

q

t

W

Figure 2.4: Feynman diagram for pp→ B′ → Wt
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CHAPTER 3

LHC and ATLAS

“Experimentation is the least arrogant method of gaining knowledge. The experimenter humbly asks a
question of nature.”-- Issac Asimov

The Large Hadron Collider (LHC) was built to cement our understanding of the Standard Model and
explore the possibilities of the existence of Beyond the Standard Model (BSM) physics. It has operated
from 2009 to 2013 for Run I at centre-of-mass energies,

√
s = 7 and 8 TeV. It was shut down for the

next two years for an upgrade. After the discovery of Higgs boson, the LHC will now operate for Run
II from 2015 to 2018 at centre-of-mass energies of 13 and 14 TeV to look for BSM physics. In the first
part of this chapter we will give an overview of the LHC. In the second part, we illustrate the working
of the ATLAS detector, the one which was used for our analysis.

3.1 The Large Hadron Collider

The LHC [31] is a circular proton-proton collider built in the former Large Electron Positron (LEP)
collider tunnel. The 26.7 km long collider is housed 100 m underground at the European Center for
Nuclear Research (CERN) in Geneva. This grand machine was designed to operate at

√
s = 14 TeV

with instantaneous luminosity of 1034 cm2 s−1. The LHC has taken 20.3 fb−1 of data in 2012 at
√

s = 8
TeV [32] . In this analysis we have used data from this dataset.

The proton beams are collided at four interaction points. The LHC hosts four detectors at these
points. The two general purpose detectors, ATLAS [33] and CMS [34] are used for detecting different
final states. LHCb [35] and ALICE [36] are two special purpose detectors located at the two other
collision points. LHCb studies B-physics whereas ALICE is designed to study heavy-ion collisions at
lower energies. Besides these four experiments there are also three smaller experiments: TOTEM [37],
LHCf [37], and MoEDAL [38]. TOTEM will measure the total proton-proton cross-section and other
phenomena like the elastic scattering and diffraction dissociation. LHCf measures neutral particle at low
angles. The results of this experiment will be used as an input in studying cosmic-ray-induced particle
showers in our atmosphere. MoEDAL will look for magnetic monopoles and other exotic particles. A
schematic diagram showing all the major experiments is shown in Figure 3.1

The protons used are accelerated in multiple steps before being injected into the LHC ring. First they
are accelerated by radio-frequency (RF) cavities up to 750 keV. They are then sent to the proton Linear
Accelerator to gain energies of 50 MeV. Subsequently the Proton Synchotron Booster (PSB) boosts the
protons to 1.4 GeV and injects them into the Proton Synchrotron (PS). The PS increases the energy of
the protons to 25 GeV before sending them to the Super Proton Synchrotron which finally injects them
into the LHC ring after accelerating them to energies of 450 GeV. The LHC is designed in a manner
such that it can collide 2808 proton bunches with 1.15 × 1011 protons per beam with a bunch spacing of
25 ns.
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.

Figure 3.1: A schematic view of the major experiments at LHC

3.2 ATLAS detector

The ATLAS detector is a general purpose detector built to observe all possible final states. The 44 m
long, 25 m high, and 7000 ton heavy detector is the largest detector at LHC. The detector is managed by
the ATLAS collaboration which also performs analysis on the data acquired by ATLAS. The detector
comprises the inner detector, the electromagnetic and hadronic calorimeters, the muon spectrometer,
and the magnet systems [39]. An overview of the detector is shown in Figure 3.2

3.2.1 Kinematic observables

Before going into the details of the detector, we would like to describe the kinematic observables used
in ATLAS for the various measurements. For measurements, ATLAS uses a right-handed coordinate
system. The direction of the beam is assumed to be the z-axis. The transverse plane is taken to be
the xy plane. The y direction is in the vertical direction pointing upwards. The x axis is defined in
the horizontal direction pointing toward the center of the LHC ring. In reality partons, the different
constituents of the proton collide with each other. Each of those partons carries a part of the proton,
thus giving us an uncertainty while measuring the total momentum in the z direction. So we use the
transverse momentum pT which is defined as

pT =

√
p2

x + p2
y (3.1)
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Chapter 3 LHC and ATLAS

Figure 3.2: An overview of the ATLAS detector

The neutrinos are not detected by the detector due to their weak interactions. So we define a similar
variable in the transverse plane Emiss

T to account for that. Emiss
T is calculated as the magnitude of the

vector imbalance of the momentum in the transverse plane. We use a cylindrical detector, thus making
cylindrical co-ordinate system the natural choice inside the detector.

The azimuthal angle φ and the polar angle θ are both measured around the beam axis. In our system,
we use a variable η as a measure of the polar angle.

η = −ln tan
θ

2
(3.2)

In the region around the beam pipe, particle densities are roughly flat as a function of η. We also use the
distance, ∆R in the η − φ coordinates for our measurements. It is defined as

∆R =

√
∆η2 + ∆φ2 (3.3)

3.2.2 Constituents of the ATLAS detector

Magnets

ATLAS uses both toroidal and solenoid magnets. The inner magnet is a central solenoid located around
the beam pipe. It provides a field of 2 T in the inner tracker. The second magnet system is toroidal and
is split into three parts, the barrel part is installed around the central calorimeter and two end caps are
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3.2 ATLAS detector

installed at the two ends of the detector. It produces a field of 0.5 T in the barrel region and a field of
0.15-2.5 T in the end-cap regions.

Inner detector

The inner detector (ID) of the ATLAS detector is the closest detector component to the beam pipe. The
3.5 m long ID which has a radius of 1.1 m starts at a distance of 5 cm from the interaction point. It is
embedded in the solenoid and covers a volume corresponding to |η| < 2.5 . The three main components
of the ID are the pixel detector, semiconductor tracker (SCT), and the transition radiation tracker (TRT).

Pixel detector The pixel detector used in ATLAS is a silicon detector. The pixel sensors in this
detector have a size of 50 × 400 µm2. Three cylindrical barrel layers and three discs in each of the end
caps make up this detector. The cylindrical structure is made up of pixel modules. These pixel layers
have a design accuracy of 10 µm in the R − φ direction and 115 µm in the z-direction. Such high degree
of precision allows us to distinguish between particles with lifetimes of the order of picoseconds (e.g. B
hadrons and tau leptons) decaying via a primary vertex and those decaying via a secondary vertex.

SCT THE SCT is the next sub-detector in the ID. In the barrel region, the SCT is made up of four
cylindrical double-layers of silicon microstrips and in the end-cap regions it is built of nine layers of
discs. The SCT has a spatial resolution of 16 µm in the R − φ plane and 580 µm in the z direction.

TRT The TRT is the largest part of the ID. It is built from straws-tubes having 4 mm diameter. It has
a coverage up to |η| ≤ 2. Each of these straw-tubes acts as a drift chamber. The straws are placed along
the z-axis. The TRT has 351,000 readout channels. It has the lowest tracking precision among the sub-
components of the ID, but it can combine precision measurements from the pixel detector and the SCT
at larger radius. Due to the longer track length of the TRT it can contribute significantly to momentum
measurements. It also helps us to do a robust pattern recognition and charged particle identification.

Calorimeters

Calorimeters are that part of the detector which contribute towards energy measurements and particle-
track identification. ATLAS has two calorimeters, namely the electromagnetic calorimeter (ECAL) and
the hadronic calorimeter (HCAL). The ATLAS calorimeters have a coverage of |η| < 5.

ECAL The ECAL records electromagnetic showers from electrons, positrons, and photons. It consists
of a central region covering the barrel covering |η| < 1.475 and two co-axial wheels at the end-caps
which have a coverage of 1.375 < |η| < 3.2. The ECAL uses liquid argon (LAr) [40] as its primary
material and accordion-shaped lead plates as absorbers. The ECAL has a thickness of more than 22
radiation lengths, X0 (X0 is the distance needed to factorise the electron energy by 1/e of its original
value) in the barrel and more than 24 X0 at the end-caps. This ensures negligible leakage to the HCAL.
The resolution of the ECAL is

σE

E
=

10%
√

E
⊕ 0.7% (3.4)

where E is the energy of a particle and σE is the RMS of the reconstructed energy probability.
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HCAL The HCAL [41] records showers from strongly interacting particles and jets. It occupies the
outer barrel region with |η| < 1.6 and end-cap regions with 1.5 < |η| < 3.2. The barrel region uses
scintillating tiles as active material and steel as absorbers whereas the end-caps are LAr calorimeters
with copper absorbers. The energy resolution of the HCAL is given by

σE

E
=

50%
√

E
⊕ 3% (3.5)

Muon spectrometer

The muon spectrometer is situated at the outer periphery of the ATLAS detector. As the name suggests,
it is used to track and measure the momentum of muons. Since muons have a relatively longer lifetime
they escape the ECAL and are measured by the muon spectrometer. They also do not make electromag-
netic or hadronic showers, thus needing a spectrometer for detection. The measurements in this region
strongly rely on the structure of the magnetic field. The central region of |η| < 1 is dominated by the
field of barrel toroids and the end-cap region of 1.4 < |η| < 2.7 is affected by the end-cap toroids. The
intermediate region 1.0 < |η| < 1.4 is affected by an interplay of both the fields. The thin gap or the
resistive plate chambers is used for switching on the muon trigger.

Trigger system

The ATLAS detector uses three levels of trigger system. The Level 1 (L1) trigger is a completely
hardware based trigger. Objects are selected by using information from regions with low granularity.
This trigger looks for leptons with high pT, photons and hadronically decaying taus. This trigger has a
latency of 2 µs and a maximum acceptance rate of 75 kHz. Muons are triggered for pT > 10 GeV at
L1. The central trigger towers (η < 3.2) are used for triggering electron. L1 uses a pT > 14 − 16 GeV
electron trigger. The Level 2 (L2) filter reduces the acceptance rate from 75 kHz to ∼ 3 kHz. In this
trigger, information from regions located around indicated objects is used. The third trigger or the event
filter is used to select events for future analysis. At this level we use an acceptance rate of 300 Hz. This
corresponds to data acquisition of 300 MB s−1 i.e. 3000 TB per year, thus making storage demanding.
The L2 and the event filter comprises the High-Level trigger (HLT).
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CHAPTER 4

Event selection

“The unity of all science consists alone in its method, not in its material.” -- Karl Pearson

In thus chapter we will discuss the event selection used in our analysis. As discussed earlier we are
looking into the decay channel where b∗/B′ decays into a W boson and a top-quark. In our analysis we
consider two channels, namely single-lepton and dilepton.

1. Single-lepton Channel: In this channel we have a final state that can be written as b∗ → Wt →
WWb→ ` + ν` + qq̄′b or B′ → Wt → WWb→ ` + ν` + qq̄′b with an extra forward jet as shown
in Figure 2.4. We consider the charge-conjugate decay modes in this thesis. The prompt W boson
or the W boson from the top-quark decay decays leptonically and the other W boson decays
hadronically. When the prompt W boson decays hadronically we call that final state hadronic W
and when the W boson from the top-quark decays hadronically we call that final state hadronic
top. The respective regions are illustrated in Figures 4.1a and 4.1b

2. Dilepton Channel : In this channel we have a final state that can be written as b∗ → Wt →
eµ + νν + b or B′ → Wt → eµ + νν + b with the similar requirement of a forward jet. In this case
both the prompt W boson and the W boson decaying from the top-quark decay leptonically. This
region is illustrated in Figure 4.1c

ℓ ν
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b q q

W

(a) Hadronic top final state
ℓν

W

t

b

qq

W

(b) Hadronic W final state

ℓν

W

t

b

W

ℓ ν

(c) Dilepton final state

Figure 4.1: Different final states for b∗/B′ → Wt
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4.1 Object definitions

Electrons Events which have a single top-quark in their final state are triggered in ATLAS by re-
quiring a high pT. The inner detector tracks are matched to electron candidates reconstructed from
calorimeter clusters. Electrons used in this event selection are so-called “tight++” electrons [42]. Se-
lected electrons have Ecluster/cosh(ηtrack) > 25 GeV and |ηcluster| < 2.47, where Ecluster/cosh(ηtrack) is
the transverse energy. We also place a veto on electrons in the calorimeter barrel-endcap region with
the condition 1.37 < |ηcluster| < 1.52. In order to suppress background from different processes for high
pT isolated electrons, we have to ensure that there is as low calorimeter activity around the electron
candidates. We use cuts on two isolation variables for this purpose, the first being the energy deposited
in the calorimeter around the electron with ∆R = 0.2 and the second being the pT sum of tracks around
the electron with ∆R = 0.3.

Muons Muons are reconstructed by matching hits from the muon spectrometer to inner detector
tracks. We select muons that have pT > 25 GeV and |η| < 2.5. In addition to this, the muon can-
didates must be classified as tight and have as author MuidCombined [43]. We use certain isolation
criteria to reduce background contamination from events producing muons from heavy flavour quarks.
We require Il < 0.05, where Il is the ratio of the sum of pT of tracks in a cone of variable size to the pT
of the muon. Selected muon candidates should not overlap with reconstructed jets with ∆R < 0.4.

Jets The anti-kt algorithm [44] is used to reconstruct the jets used for our analysis. Locally calibrated
topological clusters is used as an input for finding the jets. Jet energies are calibrated using energy and η
dependent correction factors derived from simulation. Residual corrections from in-situ measurements
are added to these correction factors [45]. Jets with two different radii are used. Small-R jets ( j4)
have ∆R = 0.4, pT > 25 GeV, and |η| < 4.5. For high masses of b∗/B′ the decay particles have
high pT. In such cases, the top-quarks become boosted i.e. their decay products merge at the detector
level. So we require large-R jets to properly identify the final decay products. Large-R jets ( j10) have
a radius of 1.0 [46]. These jets are trimmed to minimise the impact of energy depositions from pile-
up. The trimming process is designed to get rid of any initial radiation, multiple interaction or pileup
contamination of these jets. Jets which contribute less than 5% of the large-R jet pT are removed. The
large-R jets used in this analysis have pT > 200 GeV and |η| < 2.0.

b-quark jet In final states having a top-quark as a decay product we need to distinguish between jets
originating from b quarks and those from other sources. Since the weakly decaying b hadrons have a
relatively long lifetime (typically 1.5 ps), they decay at a secondary vertex which can be distinguished
from the primary one. We use a neural network based algorithm called the MV1 for identifying the
b-quarks [47]. A top-quark pair MC sample is used to calculate the tagging weights used to tag a jet as
b-jet. The working point used has a 70% efficiency of selecting b-jets in the MC sample.

Missing transverse energy Emiss
T , missing transverse energy, is a measure of the magnitude of the

missing momentum of the escaping neutrinos. It also gives us an estimate of energy losses due to
detector resolution and inefficiencies. It is calculated as the vector sum over all the topological clusters
(3-D objects built from calorimeter cells) in an event. Subsequently, object level corrections are applied
to refine its definition.
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4.2 Single-lepton channel

As shown in Figures 4.1a and 4.1b, the single-lepton channel final state can be written as Wt → ` +

Emiss
T + jets. For B′ we require the presence of one extra forward jet. So the selected signal events should

have the following criteria

• The events should have exactly one isolated lepton (electron or muon).

• They should have two or three small-R central jets with |η| < 2.5. Exactly one of the jets should
be b-tagged. For B′ event candidates in the signal region, at least one additional forward small-R
jet with 2.5 < |η| < 4.5 should be present.

• To reduce the fraction of mis-identified lepton background we require Emiss
T > 20 GeV and

mT (`.Emiss
T ) + Emiss

T > 60 GeV, where mT (`.Emiss
T ), the transverse mass of the lepton and Emiss

T
is defined as

mT (`, Emiss
T ) =

√
2pT(`)Emiss

T (1 − cos∆φ(pT(`), Emiss
T )) (4.1)

where pT(`) is the value of the lepton transverse momentum and ∆φ(pT(`), Emiss
T ) is the difference

of the azimuthal angle of lepton and missing transverse momenta.

• The selected events must have at least one large-R jet with pT > 200 GeV and m j10 > 50 GeV. If
more than one large-R jets is present, we consider the one with highest pT

We use cuts on the difference of azimuthal angle (∆φ) between the lepton and the large-R jet and
the minimal distance between the small-R and large-R jets to define our signal region. The large-R jet
cut of m j10 > 50 GeV and a topology cut ∆φ(`, j10) > 1.5 are applied to all the categories. As shown
in Figures 4.1a and 4.1b, we define two signal regions, hadronic top and hadronic W. The exact
definitions of the regions are given in Table 4.1.

Category reference number of b-tags forward jet topology cuts
b∗, hadronic top 1 no cut min∆R(`, j4) > 1.5

max∆R( j4, j10) < 2.0
b∗, hadronic W 1 no cut min∆R(`, j4) < 1.5

max∆R( j4, j10) > 2.0
B′, hadronic top 1 ≥ 1 min∆R(`, j4) > 1.5

max∆R( j4, j10) < 2.0
B′, hadronic W 1 ≥ 1 min∆R(`, j4) < 1.5

max∆R( j4, j10) > 2.0

Table 4.1: Event categorisation of the b∗ or B′ decays in the single-lepton channel.

The invariant mass of the final state, i.e. the vector sum of the four momenta of the lepton, the small-R
jets, and the missing transverse momentum (

∑
(pl + psmall−R jet + pmiss

T ) is used as our discriminant for
separating signal and background events in the statistical analysis.

In the single-lepton channel, the two major background contributions come from the top-pair and
W+ jets production. Other backgrounds with smaller contributions are single top-quark production,
Z+jets and other diboson processes. We use four control regions, two regions corresponding to top-
pair enriched regions and the other two corresponding to W+jets enriched regions. Both the top-pair
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and W+jets control region are subdivided into the hadronic top and the hadronic W sub-categories. The
definition of both the regions is similar to that of the signal regions except we have exactly zero b-tagged
jets for the W+jets region and at least two b-tagged jets for the top-pair region.

4.3 Dilepton channel

As shown in Figure 4.1c, for the dilepton channel we can write the final state as Wt → eµ + b + Emiss
T .

The requirement of an extra forward jet for B′ is also needed in the dilepton case. The criteria used for
selecting signal events are

• The selected events should have exactly one isolated electron and exactly one isolated muon with
opposite charges.

• For the jets, we require pT > 25 GeV. Exactly one of the central jets should be b-tagged, as they
are beyond the acceptance of the tracking detectors. Jets having 2.5 < |η| < 4.5 are also taken into
account. These jets cannot be b-tagged. For B′ the existence of a small-R jet with 1.5 < |η| < 4.5
is required.

• The minimum azimuthal angle difference between the leptons and the leading small-R jet j0
should satisfy the requirement min∆φ(`, j0) < 0.9.

We use two signal regions for our analysis, 1-jet-1tagged and 2-jet-1tagged. The transverse mass

of the final state (
√

(Emiss
T )2 − (pmiss

T )2) is used as the discriminant to separate signal and background
events. The strict cut on the number of b-jets suppresses the top-pair background. The second untagged
jet for the second signal region is allowed to have looser pT cut of pT > 30 GeV. The main background
contribution comes from the top-pair. Other backgrounds are single top-quark production, Z+jets and
other diboson processes. Since our final state is an eµ one, the Z boson can decay to a tau pair and eµ
only for the background processes. We define a control region 2-jet-2tagged for a better modelling of
the top-pair.
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CHAPTER 5

Statistical methods

“I believe that we do not know anything for certain, but everything probably.” -- Christiaan Huygens

In all experimental sciences, statistical methods play a crucial role in reaching the correct scientific
inferences. In high energy physics, we use these methods to test the validity of different theoretical
models with respect to the collision data obtained in our colliders. In this chapter, a detailed description
of the statistical methods used in our analysis will be presented. We use both Bayesian and frequentist
methods for setting limits on the parameter of interest and frequentist methods for performing hypothesis
tests.

5.1 Basic concepts

In this section, some ideas about statistical inference are presented. There are two main schools of
thought regarding the definition of probability namely frequentist and Bayesian. To quote [19] “In fre-
quentist statistics, probability is interpreted as the frequency of the outcome of a repeatable experiment”.
As defined in [48] the interpretation of probability in Bayesian statistics can be stated as “a measure of
the degree of belief that an event will occur”.

5.1.1 Statistical inference

As mentioned earlier, statistical inference is the process of comparing our data to different theoretical
models. Let us consider an experiment where we obtain a set of measured physical quantities ~D. We
would like to compare these values to the predictions of a model M having parameters ~λ. Let ~x be the
measured values of the physical quantities, λi, predicted by the given model M. Now we compare the
predicted and observed values using different statistical methods. In most cases, we either use a fre-
quentist or a Bayesian approach. In experimental sciences, we reach a concrete result after performing
the same experiment numerous times. In this context frequentist methods are used. But while perform-
ing a given experiment, we have a set of prior information about our experiment. Incorporating these
information is one of the main motivations behind using Bayesian approach.

Frequentist approach In the frequentist approach we define the probability as P(~x = ~D|~λ,M) i.e the
probability that ~x = ~D given the model M represented by the parameter vector ~λ. Using this definition
of probability we define a probability distribution function (p.d.f.) f (xi|~λ) for each of the measured
quantities xi. We then define the likelihood L(~λ) as

L(~λ) =
∏

i

f (xi| ~λ) (5.1)
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We use this likelihood to estimate the best approximate values of the different parameters in the
parameter vector ~λ. The uncertainties on these values are also computed to give the measurement a
proper meaning in the frequentist framework. If the measured value of a parameter λi is xi and if we
assume that the error distribution of that parameter is Gaussian with a given σ then we say that the
observed value of the given parameter is x ± σ. In the frequentist framework this statement can be
rephrased as “The statement that (x − σ) < λi < (x + σ) has a 68% probability of being true” [49].

Bayesian approach In Bayesian statistics we have a probability distribution P0(~λ|M), called the
prior, describing our prior belief in the knowledge of ~λ according to our model M. After our experi-
ment, Bayes’ theorem gives us the posterior probability distribution P(~λ,M|~D). In our notation we can
formulate this as following,

P(~λ,M|~D) =
P(~x = ~D|~λ,M)P0(~λ|M)

P(~D)
=

P(~x = ~D|~λ,M)P0(~λ|M)∫
P(~x = ~D|~λ,M)P0(~λ|M)d~λ

(5.2)

This posterior distribution is used to compute different properties of the parameter. We can compute
the mean, standard deviation of the posterior distribution to get the observed value and the respective
uncertainties. In Bayesian statistics, we should ensure that our measurement is robust i.e. show that any
arbitrary prior doesn’t change our measurement to a large extent. We will discuss about the different
choice of priors in detail in Section 5.2.3.

5.2 Parameter estimation

Parameter estimation is the method of estimating the “best possible value” of a given parameter and
the uncertainties on those estimated values. We use various methods, both frequentist and Bayesian
to compute these values. There are two types of frequentist methods which can be used, maximum
likelihood method and least squares method. Here we will elaborate only the first method. The Bayesian
method used is called marginalisation.

5.2.1 Method of maximum likelihood

In the frequentist method we use a consistent, unbiased, and robust estimator λ̂i [19] to estimate the
observed value of λi. We use the definition of likelihood defined in (5.1). The product is over the
N measured quantities. We maximise the likelihood with respect to the each of the n values of the
parameter vector ~λ, λi, to get the maximum likelihood estimators. the solution of the following equations
gives us the value of the estimators.

∂ ln L
∂λi

= 0 i = 1, 2.....n (5.3)

The log-likelihood is used because of the useful properties of the logarithm function and the pos-
sibility of the likelihood taking very large values. In most algorithms used in high energy physics the
negative log likelihood is minimised. In most cases the probability distribution f (xi) is Gaussian. In
that case, it can be shown that for repeated independent experiments the estimated mean λ̂i is distributed
according to a Gaussian distribution with a mean of λ̂i [50].
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5.2 Parameter estimation

In high energy experiments, we have large samples of data so it is convenient to use binned data. If
our data is binned over B bins and the content of each bin is Ni the likelihood is multinomial and is
expressed by [50]

L(~λ) = Ntot!
B∏

i=1

Pi(~λ)Ni

Ni!
(5.4)

where Ntot =
∑

Ni is the sample size of the data and Pi(~λ) is the expected probability that a given event
will appear in the ith bin. It can be expressed in terms of the p.d.f as

Pi(~λ) =

∫ xup
i

xlow
i

f (x| ~λ)dx (5.5)

xup
i and xlow

i being the upper and lower bin edges of the ith bin respectively. The corresponding
negative log likelihood can be written as

− ln L = −

B∑
i=i

Ni ln Pi(~λ) + const. (5.6)

In our analysis, we will use a binned log likelihood fit to find the estimators λ̂i of the parameters of
interest. The details of that procedure will be explained in later sections.

5.2.2 Marginalisation

In the Bayesian approach, we use the posterior p.d.f., as defined in (5.2), to find the different properties of
our parameters of interest. The posterior p.d.f. gives the distribution for the complete parameter vector.
But in most cases, we are interested in the posterior p.d.f.s of individual parameters. We use a procedure
called marginalisation to compute these individual posterior p.d.f.s. The marginalised posterior p.d.f. of
a given parameter λi is computed by integrating the full posterior p.d.f. over the parameter space of all
the parameters λ j,i. The marginalised posterior p.d.f. is written as [51]

P(λi,M|~D) =

∫
P(~λ,M|~D)d~λ j,i (5.7)

With the help of the following formulae, the marginalised posterior p.d.f.s gives us the desired properties
like mean, median, standard deviation of different parameters in the parameter vector.

Mean

λ̄i =

∫
P(λi,M|~D)λidλi

Median
The median λmedian

i is defined by

0.5 =

∫ λmedian
i

λmin
i

P(λi,M|~D)dλi

Standard deviation

σi =

√
λ̄2

i − (λ̄i)2
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Chapter 5 Statistical methods

5.2.3 Priors

In a Bayesian method, the prior P0(~λ|M), as defined in (5.2), describes our prior “degree of belief” about
the possible values ~λ can take. The choice of our prior shouldn’t affect the measurement, it should be an
uninformative one. The flat prior is the simplest case of an uninformative prior. The Jeffreys Prior [52]
is a commonly used prior in Bayesian analyses. It is defined as

π(~λ) =

√
detI(λ)i j (5.8)

where I(λ)i j is the Fisher Information Matrix defined as

I(λ)i j = −E
(
∂2 ln L
∂ λiλ j

)
(5.9)

Jeffreys prior is invariant under a re-parametrisation of the parameters λi → λ′i , thus making it an
objective prior. If the likelihood L assumes a Gaussian distribution then it can be shown that the Jeffreys
prior is uniform.

5.2.4 Template fitting of Monte Carlo samples

In high energy physics experiments, we obtain distributions of different physical observables from our
collision data. These distributions have contributions from different processes. In real data, we don’t
have information about the individual contributions from different processes. We use a method called
Template fitting [53] to find these individual contributions. We use Monte Carlo simulations of the
distributions for each process and fit it to our observed data. We use binned histograms, which are
called templates, to do the fit. This method compares the shapes of the individual templates to the
shapes of the data templates. The individual normalisation factors can be calculated using the methods
mentioned in the previous sub-sections.

Suppose we have P processes and each distribution is binned over B bins. Let E j
k and N j

k be the
respective expected and observed events for the jth process in the kth bin. The events in a given bin k
are assumed to be independent and follow a Poisson distribution with a mean Ek . In that case can write
the likelihood L as

L =

B∏
k=1

ENk
k

Nk!
· e−Ek (5.10)

The same expression can be obtained if we assume the total number of observed events, N, to follow
a Poisson distribution with a mean E [50]. The total number of expected number of events E can be
written as the sum of the individual contributions from each process. The expected number of events in
bin k can be thus written as [19]

Ek =

P∑
j=1

p j A jk (5.11)

deleting where p j is the scale factor a given process j and A jk are the expected number of events for
process j in bin k. The data events a jk for a given process j in bin k are produced via a Poisson
distribution.
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5.3 Nuisance Parameters

Frequentist method For the frequentist approach we use the method as described in Section 5.2.1.
Using (5.10) and (5.11), we can write the log likelihood as

ln L =

B∑
k=1

Nk ln Ek − Nk +

P∑
j=1

B∑
k=1

a jk ln A jk − A jk (5.12)

We maximise the log likelihood to get the estimates of p j by solving the following P × (B + 1)
equations [54]

B∑
k=1

NkA jk

Ek
− A jk = 0 ∀ j (5.13)

Nk p j

Ek
− p j +

a jk

A jk
− 1 = 0 ∀ j, k (5.14)

Bayesian method For the Bayesian approach, we use the method as described in Section 5.2.2. We
use the definitions of likelihood and marginalised likelihood as mentioned in (5.10), (5.11), and (5.7) to
get the marginalised posterior distribution for a given process.

L(p j|N) =

∫
L(~p|N)d~pi, j (5.15)

Consequently, we can estimate p j by finding the mean or median of these posterior distributions. We
can subsequently compute different quantiles to compute the errors on p j.

5.3 Nuisance Parameters

In any particle physics experiment, dealing with uncertainties is one of the most complex and difficult
steps. As any physics experiment, the two main sources of uncertainties are systematic and statist-
ical uncertainties. In collider experiments statistical and systematic uncertainties are not necessarily
independent, thus making their estimation a complex process. The quantities used to estimate the un-
certainties are called nuisance parameters.

Systematic Uncertainties In particle physics experiments, we define systematic uncertainties in the
following manner [55].

“Systematic uncertainties are measurement errors which are not due to statistical fluctuations in real
or simulated data samples.”

The common sources of systematic uncertainties in collider experiments are

• Poor knowledge of trigger efficiencies, detector resolutions, and detector acceptances.

• Poor reconstruction of the detector environment.

• Uncertainties on input parameters like luminosity.

• Uncertainties coming from the generation of Monte Carlo simulations.

• Theoretical uncertainties.

25



Chapter 5 Statistical methods

Statistical Uncertainties Statistical uncertainties in any analyses come from fluctuations in data and
Monte Carlo simulations. The statistical uncertainties from the data are generally larger. We consider
the uncertainties on the scale factor, p j for each process j, and the statistical fluctuations in different
bins as our main sources of statistical uncertainties.

5.3.1 Incorporating uncertainties

The likelihood contains all the information about our statistical model. To estimate the effects of differ-
ent uncertainties, we have to include them into the likelihood in a consistent manner. The easiest way of
doing that is multiplicating one factor for each uncertainty as a nuisance parameter into the Likelihood.
We assume a Gaussian contribution for each parameter. then the Poisson Likelihood in (5.10) can be
re-written as [56]

L =

B∏
k=1

ENk
k

Nk!
· e−Ek

∏
i

G(θi) (5.16)

These Gaussian functions can be interpreted as priors in the Bayesian approach and constraints in the
frequentist approach. We can represent both systematic and statistical uncertainties in this manner. In
some cases, we take a log-Gaussian prior to make sure that the yields do not become negative. The
Gaussians are generally taken as G(0, 1), where the mean zero represents no variation. The effects of
these uncertainties can be computed using both the frequentist and Bayesian methods.

Frequentist method In the frequentist approach, the negative log likelihood gets an additional con-
tribution from each of the nuisance parameters. Using (5.16) we get

− ln L = −

B∑
k=1

[Nk ln Ek − Nk] +
∑

i

s2
i (5.17)

where s2
i is the contribution from θi. This can be minimised for individual θi to give us an estimator

of the parameters of interest for the respective uncertainties. In that way, we can understand the effect
of each uncertainty. We can repeat the same process for any set of given uncertainties. There is also a
method called profiling where we maximise the following profiled likelihood [19].

L(~λ) = L(~λ,
ˆ̂
~θ(~λ)) (5.18)

where
ˆ̂
~θ are the values of the nuisance parameters which maximise the likelihood for given ~λ.

Bayesian method In the Bayesian approach, we use the method of marginalisation to integrate out
the nuisance parameters. After integrating out all the nuisance parameters we get our posterior p.d.f.
for the parameter vector. We can also integrate out θ j,i to find the effect of θi on the posterior p.d.f.
Using (5.7), the marginalised posterior likelihood for any parameter λi can be re-written as

L(λi, ~θ,M|~D) =

∫ ∫
L(~λ,~θ,M|~D)d~λ j,id~θ (5.19)

We can also write the marginalised posterior for a given nuisance parameter θi as
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5.4 Hypothesis tests

L(θi, ~λ,M|~D) =

∫ ∫
L(~λ,~θ,M|~D)d~θ j,id~λ (5.20)

As defined in (5.16), the priors on the nuisance parameters are Gaussian so the posterior likelihoods
will also be Gaussian. These post-fit posteriors of the different nuisance parameters give us an estimate
of their effect on our parameter vector.

5.3.2 Morphing

Some uncertainties affect both the shape and rate of our distributions. We generally have distributions
for the nominal and ±1σ variations for a given uncertainty. If any uncertainty affects the shape of the
nominal distributions, we would like to get an estimate of its effect for any arbitrary variation. In such
cases, we introduce a parameter f as a continuous measure of the variation. We call this parameter the
morphing parameter. It is defined such that f = 0,±1 are the nominal and ± σ variations respectively.

Suppose the normalisation of the efficiencies for the jth process in the ith bin is represented as ε ji. If
ε0

ji, ε
+
ji, and ε−ji are the respective efficiencies for the nominal and ± 1σ variations, then in the simplest

case, we write the efficiency ε ji [56]

ε ji = ε0
ji + f

ε+
ji − ε

−
ji

2
(5.21)

More sophisticated interpolation and extrapolation algorithms are generally used for modelling the spec-
tra for any arbitrary variation. Some of these algorithms are explained in the next chapter.

5.4 Hypothesis tests

One of the main goals of high energy physics experiments is to look for new processes and particles. In
a collider, all types of processes, hopefully including the ones we are searching for, occur. The method
of testing different hypotheses against each other is called hypothesis testing.

For search experiments, we test the background-only hypothesis. If there is presence of a significant
signal, we can reject the background-only or the null hypothesis with a higher degree of confidence. We
can also check the null hypothesis against the signal-plus-background hypothesis to search for the pres-
ence of a signal. In reality, our data either represents the null hypothesis or the signal plus background
hypothesis. When we make a statement about the validity of the null hypothesis (H0) we can make two
types of errors namely.

1. Type I error : The null hypothesis has been rejected although it is true. This error can happen with
a probability α.

2. Type II error : The null hypothesis has not been rejected although it is false. This error can happen
with a probability β.

The probabilities of committing or not committing the aforementioned errors can be shown in Table 5.1 [57].

We generally use a test statistic Q that helps us to quantify the difference between different hypotheses
and the null hypothesis. A test statistic is chosen in such a manner that our test is unbiased. We should
make sure that 1 − β � α. If 1 − β ≤ α, the probability to choose the null hypothesis when it is false,
(1 − β), is greater than the probability to choose the null hypothesis when it is true, (α), our test is
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H0 is true H0 is false
H0 rejected Type I error (Probability α) Right decision (Probability (1 − β))

H0 not rejected Right decision (Probability (1 − α)) Type II error (Probability β)

Table 5.1: Probabilities of occurrence of Type I and Type II errors

biased. From the Neyman-Pearson lemma we know that the likelihood ratio is an optimal test statistic.
We define Q as

Q(x) =
L(x|Hi)
L(x|H0)

∀Hi (5.22)

5.4.1 p-Value and Significance

A deviation from the null hypothesis doesn’t always suggest a presence of a signal. While quoting dis-
covery or evidence, we have to make sure that Type I error is not happening. We define a quantity called
p − value which gives us the measure how much different hypotheses differ from the null hypothesis.
In most cases, we measure the deviation of the signal-plus-background hypothesis from the null hypo-
thesis. We have distributions for the Q-values of both null and signal plus background hypothesis. The
following figure shows such a comparison.

Figure 5.1: Q-value plot for hypothesis test

In the Figure 5.1 the graph on the right is the Q-value distribution of the null hypothesis and the
graph on the left is the Q-value distribution of the signal plus background hypothesis. The vertical line
indicates the median of the Q-value distribution of the signal-plus-background hypothesis. We define p-
value as the area of the Q-value distribution of the null hypothesis enclosed by the Q-value distribution
of the signal-plus-background hypothesis. So it gives us a measure of overlap or difference between the
two hypotheses. It can be shown that p-value can also be defined as the probability of making a Type I
error

The significance Z is the p-value described in terms of σ of a unit Gaussian. So we define significance
as following ∫ ∞

Z
e−

t2
2 dt = p (5.23)

In particle physics, we consider 3σ as evidence and 5σ as the discovery of the signal.

28



5.5 Limit Setting

5.4.2 Hypertest and trials factor

In particle physics, we generally have large samples of data binned across numerous bins. Suppose we
have 1000 bins and we get a discrepancy in one bin for a given hypothesis test. On the basis of such
a test we cannot reject the null hypothesis. If we had devised our test in some other region we could
have got different results. The choice of such tests is completely ad hoc. So we cannot use one such
test to come to any conclusion. We should “look elsewhere”, i.e. we should use numerous hypothesis
tests across the whole spectrum to reach a concrete result. So we perform a set of hypothesis tests called
hypertest.

Suppose we devise N independent hypothesis tests and define p = α as the p-value for which we
reject H0. The probability that for one of these tests pi ≤ α is [58]

P(one test has p ≤ α) = 1 − (1 − α)N (5.24)

N is called the “trials factor”. If we have Ñ independent tests among the N hypothesis tests then we can
say that we can reject H0 with a Type I error of 1 − (1 − α)Ñ where we call Ñ as the “effective trials
factor”. To account for all the tests we define a global p-value using a new test-statistic Qnew [58]

Qnew = −log(mini pi) (5.25)

We use this global p-value to quote evidence or discovery. Hypertests are constructed using as many
possible sets of different hypothesis tests. In this way we get rid of the “look-elsewhere effect”.

5.5 Limit Setting

Experiments designed to search for new particles and processes do not always have the desired sens-
itivity. In cases where the number of background events are comparable to the number of observed
events we use a method called limit setting to set physical boundaries on the possible values for the
parameter of interest. In most cases, the signal strength is used as the parameter of interest. The signal
strength is hypothesised using the theoretical models which are to be tested in a given analysis. In case
of non-discovery, we generally quote a 95% upper limit on the signal strength. There are both frequent-
ist and Bayesian methods of interval estimation which can be used setting limits, but in particle physics
a method called CLs method is often used to do limit setting.

Frequentist method In frequentist methods, confidence intervals are used for setting limits. The
simplest method of setting upper confidence levels is the Neyman construction [59]. Using this method,
we can set a (1 − α) confidence level upper limit, λup if

P(x < λup|λ̂) = 1 − α (5.26)

where λ̂ is the true value of λ. For non-discovery, we can say that λ can be excluded for values λ < λup
at (1 − α) C.L..

Bayesian method In Bayesian approaches a method called credible intervals are used to set limits.
We can set a (1 − α) confidence level upper limit, λup if
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∫ λup

−∞

P(λ|D)dλ = 1 − α (5.27)

where P(λ|D) is the posterior p.d.f.

5.5.1 CLs Method

The CLs method [60] is a way to set exclusion limits on the signal strength. In particle physics, we
compare the expected number of background events against our data to set limits on our signal strength.
In cases where the background expectation is more than the observed data, a negative value of the fitted
signal strength fits better from a purely statistical point of view. But this is clearly an unphysical result.
If we use classical frequentist methods in such cases, even zero signal strength is excluded. To get rid
of such situations the CLs method was introduced. The CLs confidence levels are neither similar to
frequentist confidence intervals nor identical to Bayesian credible intervals.

We define a test statistic Q such that it increases with increasing sensitivity. We use the following
definitions to construct the CLs exclusion limit.

CLs+b = Ps+b(Q ≤ Qobs) =

∫ Qobs

−∞

fs+b dQ (5.28)

CLb = Pb(Q ≤ Qobs) =

∫ Qobs

−∞

fb dQ (5.29)

where fs+b and fb are the respective p.d.f.s for the signal plus background and background only hypo-
thesis.

We define CLs as [60]

CLs =
CLs+b

CLb
(5.30)

So CLs is not a confidence level in the strict statistical sense, but it is a ratio of confidence levels. We
exclude a signal at (1 − α) confidence if

CLs ≥ α (5.31)

or,
ps

1 − pb
< α (5.32)

where ps and pb are the respective p-values of signal and background hypothesis. For the CLs method,
we use likelihood ratio as our test statistic.

Merits of CLs method

• This method gives us higher coverage than classical methods for excluding a given signal hypo-
thesis i.e. the probability of the signal strength being in the excluded interval decreases when we
use the CLs method.
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5.6 Methods used

• The test statistic increases monotonically with increasing sensitivity.

• This method helps us to avoid stronger exclusion limits if the background expectation is less than
data.

• For low values of the signal strength, CLs has a better sensitivity than CLs+b has.

5.6 Methods used

In this thesis we conduct a search for the b∗/B′ signal. We use the following statistical methods in this
thesis to do this

• In the first step we test our background-only (Standard Model) hypothesis versus signal-plus-
background (b∗/B′-plus-Standard Model) hypothesis. We do this to reject or accept the background-
only (Standard Model) hypothesis. We use a type of hypertest to perform this step.

• In the second step we set limits on the signal strength for various signal hypotheses. We set
our limits by using both Bayesian and CLs methods. These methods use Bayesian and frequentist
methods of parameter estimation respectively. In this thesis we try to compare the results obtained
by these two methods.
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CHAPTER 6

Statistical tools

“Statistics are somewhat like old medical journals, or like revolvers in newly opened mining districts.
Most men rarely use them, and find it troublesome to preserve them so as to have them easy of access;
but when they do want them, they want them badly.” -- John Shaw Billings

In the previous chapter we have discussed the different statistical methods used in particle physics.
We use different tools in our analyses which implement these methods. In this chapter, the details and
working of the statistical tools used in this analysis are presented. We use four tools, BumpHunter.
Histfactory, Bayesian Analysis Toolkit (BAT), and Binned Log Likelihood (BILL) fitter,

6.1 BumpHunter

BumpHunter [58] is a statistical tool that checks the validity of the null (background-only) hypothesis
against the signal-plus-background hypothesis. It looks for bumps or excess of data over the back-
ground. It employs a hypertest, as described in Section 5.4.2, to get rid of the “look-elsewhere” effect.
The hypothesis tests which constitute the hypertest calculates the difference between the data and the
background for different regions of the parameter space. The minimum width of the window considered
for any hypothesis test is two bins. This ensures that we don’t misinterpret a single bin fluctuation as an
excess. For each of these hypothesis tests, BumpHunter calculates a local p-value. It makes sure that
the whole parameter space is scanned by the hypertest. The global p-value of the hypertest is calculated
using (5.25). The test statistic t of each of the hypothesis tests is defined as

t =

0 if di ≤ bi

f (di − bi) otherwise
(6.1)

where f (di − bi) is a positive, monotonically increasing function. This ensures that with an increasing
excess of data the test-statistic t increases. We use the Monte Carlo simulations of the background to
describe our null hypothesis, but BumpHunter also allows fitting a functional form of the background to
the observed data. For most practical purposes it is difficult to predict the correct function. BumpHunter
generates thousands of pseudoexperiments where the null-hypothesis is a distribution chosen at random
between the error bands of the original background histogram. These pseudoexperiments give us a
distribution of p-values which we use to calculate the final p-value. The final p-value used for checking
the validity of the null hypothesis is given by

p-value =
#Pseudoexperiments with p ≥ p0

#Pseudoexperiments generated
(6.2)

where p0 is the global p-value for the hypertest comparing the original MC distribution and data.
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6.2 HistFactory

Incorporating systematic uncertainties

Let us assume a factor λ that gives us the measure of all systematic uncertainties. The variations change
the background hypothesis. Our goal is to minimise this effect while looking for an excess of data. We
re-parametrise our local p-value in the following manner to incorporate the effect of all the systematic
uncertainties.

psyst
i = exp(−λ2/2) · pi (6.3)

For each hypothesis test, we choose that value of λ which minimises the effect of the uncertainties. We
achieve this by scanning over a large range of λ values. Thus the local p-value is defined as

psyst
i = max(exp(−λ2/2) · pi) (6.4)

After this, we follow the method as described above to get the final p-value.

6.2 HistFactory

Histfactory [61] is a statistical tool to build different likelihood functions in the RooStats frame-
work. This tool can incorporate the effects of various systematic and statistical uncertainties. Different
morphing algorithms are also a part of the framework to model the uncertainties in a precise manner.
Histfactory uses binned ROOT histograms to build the likelihood functions. The likelihood function
is generally defined as

L(Ncsb, ap|φp, αp, γb) =
∏

c∈channels

∏
s∈samples

∏
b∈bins

Pois(Ncsb|Ecsb) ·G(L0|λ,∆L) ·
∏
∈S+Γ

fp(ap|αp) (6.5)

Ecsb = λcs γcb φcs ηcs σcsb (6.6)

• Ncsb and Ecsb are the observed and expected events for channel c in sample s in bin b.

• G(L0|λ,∆L) is the Gaussian constraint term on the luminosity.

• fp(ap|αp) are the constraints or priors on the different nuisance parameters αp. ap is an auxiliary
measurement constraining αp The most commonly used constraint is the Gaussian constraint. For
normalisation uncertainties, we use a log-Gaussian constraint to make sure that the yields are
non-negative.

• λcs is the luminosity parameter for channel c in sample s. This parameter is constant in most cases
but this can also be varied according to the experiment.

• γcb is the bin-by-bin scale factor. The bin-by-bin scale factor is a function of the nuisance para-
meter vector α.

• S = {γcsb} and Γ = {αp} are sets containing all the nuisance parameters and bin-by-bin uncertain-
ties respectively.

• φcs is the product of all unconstrained normalisation uncertainties. This can include the different
properties of the parameter of interest.

• ηcs are the different rate uncertainties used. In most cases, these include the normalisation uncer-
tainties of the given channels.
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• σcsb are the binned histograms which contain the shape and rate information for the different
uncertainties in α.

Monte Carlo uncertainties

The histograms used as inputs for calculating the likelihood are Monte Carlo simulations of different
processes. A statistical uncertainty arises when estimated events in the histograms are quite low. If
we use the Barlow-Beeston method [54] we have to consider a rate uncertainty for each bin of the
given samples. For most analyses, this would add hundreds of extra nuisance parameters, thus making
the calculation of the likelihood computationally expensive. Instead of this, Histfactory uses an
uncertainty for each bin b. We can rewrite the Poisson distribution to include the Monte Carlo (MC)
uncertainty.

Pois(Ncsb|Ecsb(α) + γbEMC
b (α)) Pois(Mb|γbτb) (6.7)

where Ecsb(α) is the expected number of events in bin b without considering the MC uncertainty and
EMC

b (α) are the events by considering the MC uncertainty. γb is the nuisance parameter reflecting
the rate difference between the expected estimates and the MC estimates. Pois(Mb|γbτb) is a Poisson
distribution of Mb around γbτb, τb being a reparametrised variable containing the information about the
original MC sample.

Morphing

As mentioned in Section 5.3.2, we need to incorporate different morphing algorithms to precisely model
our uncertainties. Histfactory employs certain extrapolation and interpolation algorithms to do so.
The algorithms used are combinations of linear, quadratic and exponential algorithms. Here we will only
describe the algorithms used in our analysis. We use an algorithm which uses polynomial interpolation
and exponential extrapolation. We can write the rate uncertainties ηs(α) and shape uncertainties σsb as

ηs(α) =
∏
NP

Ipoly|exp(αp; 1, η+
sp, η

−
sp) (6.8)

σsb(α) = σ0
sb

∏
NP

Ipoly|exp(αp;σ0
sbp, σ

+
sp, σ

−
sbp) (6.9)

where the product is over all the nuisance parameters (NP). The interpolation or extrapolation is done
around 1 for the rate uncertainties and σ0

sb for the shape uncertainties for a given sample s in bin b. The
function Ipoly|exp can be written as

Ipoly|exp(α; I0, I+, I−, α0) =


(I+/I0)α α ≥ α0

1 +
∑6

i=1 aiα |α| < α0

(I+/I0)−α α ≤ −α0

(6.10)

Here we use a six-degree polynomial. This method helps us to avoid discontinuous derivatives at α = 0.
It also makes sure that the extrapolated and interpolated values of the various nuisance parameters are
non-negative.
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6.3 Bayesian Analysis Toolkit (BAT)

6.3 Bayesian Analysis Toolkit (BAT)

The Bayesian Analysis Toolkit (BAT) [51] is a statistical tool that uses Bayesian methods to perform
data analysis to check the validity of various theoretical models. It uses methods described in Sec-
tion 5.2.2 and Section 5.2.3 to find the various properties of the parameters of interest. BAT uses Markov
chain Monte Carlo (MCMC) methods to perform the numerical integration involved in the process of
marginalisation as shown in (5.7). It takes binned histograms of the different processes as input.

The numerical implementation of marginalisation involves integrating over the multidimensional
space of all the nuisance parameters. This integration can be thought as an approximation to a mul-
tidimensional random walk problem. Markov chain Monte Carlo (MCMC) is a commonly used method
in statistics to model a multidimensional random walk. MCMC samples random numbers based on the
nuisance parameter prior distributions to reach a stable distribution.

6.3.1 Markov chain Monte Carlo

A Markov chain is a sequence of random numbers X1, X2, ..., Xn where the conditional probability dis-
tribution of Xn+1 depends on Xn only. These chains are stochastic processes having a well-defined
stationary distribution. A stochastic process is called stationary if

• ∀ k ∈ Z+ the k-tuple (Xn+1....Xn+k) is independent of n.

A Markov chain is stationary if and only if Xn is independent of n. So it can easily be inferred that the
chain can be completely defined using stationary distributions denoted by the transition probability matrix
Pi j.

P(Xn+1 = x j|Xn = xi) = pi j i, j = 1....n (6.11)

If the chain fulfils the following conditions, the chain is ergodic i.e. the probability to be in a given state
is independent of the initial state.

• Recurrence The various states of the Markov chains are recurrent i.e.the probability of coming
back to Xi after starting at Xi is 1 for infinite (long enough) run time.

• Irreducibility This property ensures that the transition from Xi → X j ∀i, j can be achieved in
finite time.

• Aperiodicity This condition makes sure that the there is no fixed period for coming back to a
given state Xi. The chain can return to the state at irregular times.

BAT uses multiple Markov chains to compute the stationary distribution π(xi). The posterior p.d.f.
P(λi, ~ν,M|~D) as defined in (5.2) and (5.19) is the stationary distribution computed by BAT. This is illus-
trated in 6.1. An algorithm called the Metropolis-Hastings algorithm [62, 63] is used to compute the
posterior p.d.f.. The algorithm is a two-step algorithm

1. A state Xi = ~x described by the distribution π(~x) is chosen at random. A new state ~y is proposed
according to a symmetric proposal function f (~y, ~x)

2. We define a quantity r =
π(~y)
π(~x) to decide the transition of the Markov chain. Subsequently, r is

compared with a random number, U, sampled from a uniform distribution within [0, 1]. If U < r,
Xi+1 = ~y otherwise Xi+1 = ~x.

For some reasonable proposal functions f , this algorithm fulfils the conditions of an ergodic Markov
chain with a stationary distribution π(~x). The algorithm is implemented in BAT using a pre-run and a
main run. In the pre-run various Markov chains are run in parallel to ensure convergence of different
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Chapter 6 Statistical tools

Figure 6.1: An illustration of MCMC [51]

run parameters. The convergence criterion is set to be R ≈ 1 where R is defined as the square root of the
estimated variance of the desired posterior and the mean of the variance of all chains.

R =

√
σ̂π

σ̄chains
(6.12)

σ̄chains =
1

m(n − 1)

m∑
j=1

n∑
1=1

(xi − x̄ j)2 (6.13)

σ̂π =
n − 1

n
· σ̄chains +

1
m − 1

m∑
j=1

(x j − x̄)2 (6.14)

Here m is the number of chains and n are the number of elements or iterations in the Markov chain. The
main run is performed after this to compute the probability distribution of interest.

6.4 Binned Log Likelihood (BILL) fitter

The BILL fitter [64] uses the frequentist method of binned maximum log-likelihood fit as described in
Section 5.2.1 to evaluate the estimators of the parameters of interest. It uses a product of Poisson like-
lihood for each bin and Gaussian constraint terms for various systematic uncertainties. The likelihood
for P processes in B bins can be written as

L (β1, ..., βP) =

B∏
k=1

e−Ek · ENk
k

Nk!

P∏
j=2

G(β j,∆ j) (6.15)

• β1 is the relative signal cross-section normalised to the theory prediction.

• β2... βP are the relative background cross-sections (rates) normalised to the theory predictions.

• ∆ j is the relative uncertainty on the predicted rate of the process j.

• Ek and Nk are the expected and observed events in bin k respectively.

Binned histograms are used as inputs by BILL to do the fit. It uses MINUIT to do the negative log
likelihood fit. The fit is done by creating thousands of pseudoexperiments. For a process j, we create a
Poisson distribution around the expected number of events E j. Subsequently, we draw a value at random
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from the distribution and fit to the value. Each of these experiments gives us an estimate of β̂ j. After
performing all these pseudoexperiments we get a distribution for β̂ j, the median of which gives us the
fitted value of β̂ j.

Incorporating systematic uncertainties

BILL incorporates both rate and shape uncertainties by integrating over the whole parameter space of
uncertainties. It assumes a Gaussian constraint on all the systematics. For each uncertainty, BILL intro-
duces a nuisance parameter δi which gives a measure of the uncertainty. In each pseudoexperiment a δi

is chosen at random from a Gaussian distribution. We use histograms corresponding to ±1σ variation
of the systematic variations. The choice of δi for a given pseudoexperiment is decided by these vari-
ations. The pseudoexperiments calculate the fitted β j by varying the systematics both individually and
simultaneously. These values give us an estimate of the uncertainties on the post-fitted scale factors.
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CHAPTER 7

Statistical analysis

“Life’s most important questions are, for the most part, nothing but probability problems.” -- Pierre-
Simon Laplace

In this chapter we describe the statistical analysis used in the search for b∗/B′ → Wt. The statist-
ical methods and tools used for this analysis have been explained in detail in Chapters 5 and 6. We
first test the validity of the signal-plus-background (b∗/B′-plus-Standard Model) hypothesis against the
background-only (Standard Model) hypothesis. Subsequently, we set limits on the cross-section times
branching section for the process pp→ b∗/B′ → Wt. This analysis is done using ATLAS data taken in
2012 at

√
s = 8 TeV with an integrated luminosity of 20.3 fb−1.

7.1 Hypothesis test

For testing the validity of signal-plus-background hypothesis, we use the statistical tool BumpHunter.
The details of this method and the tool have been described in Sections 5.4 and 6.1. Rather than using
the original Monte Carlo simulations of the background, we fit the backgrounds to the data in the control
regions and propagate their scale factors to the signal regions. This method ensures that we get use the
correct normalisation scale factors of the backgrounds. The post-fit errors also give us a better estimate
of the effect of all the systematic uncertainties. We compare these backgrounds against the data in the
signal regions to look for any possible excess. This test gives us a global p-value as defined in (6.2)
which is used to find the significance of this test.

7.2 Limit setting

In this analysis we also set limits on the signal strength µ, defined as the product of the cross-section for
the process pp → b∗/B′ times the branching fraction BR(b∗/B′ → Wt). We set limits on the strength
of signal hypotheses for varying masses of b∗/B′. The theoretical cross-sections are hypothesised ac-
cording to the models described in Sections 2.3.1 and 2.3.2. The cross-sections for the different mass
hypotheses for b∗ and B′ are given in Table 7.2 and Table 7.3 respectively. For B′ we consider the
theoretical cross-section corresponding to λ = 2, 3, 4, where λ is a coupling parameter. The limits are
set for different mass hypotheses using the CLs method and a Bayesian method. We use frequentist and
Bayesian methods of likelihood template fitting, as described in Section 5.2.4, to fit the various binned
signal and background templates to extract the respective limits. The likelihood is a product over the
individual likelihoods of all the signal and control regions. The different signal and control regions used
in this analysis is shown in Table 7.1. The distributions for the discriminant of the different backgrounds
and signals of varying masses in all these regions are shown in Figures 7.1-7.3.
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7.2 Limit setting

Single lepton Dilepton
SR tt̄ CR W+ jets CR SR CR

hadT hadW hadT hadW hadT hadW 1-jet 1-btag 2-jet 1-btag 2-jet 2-btag

Table 7.1: Different signal and control regions. SR and CR denote signal region and control region respectively.
hadT and hadW denotes hadronic top and hadronic W decay modes respectively.

Mb∗ [GeV] σ(b∗ → Wt) [pb] Scale [pb]
Down Up

600 34.74 39.31 30.71
800 7.52 8.69 6.54

1000 1.99 2.34 1.71
1100 1.09 1.28 0.93
1200 0.61 0.73 0.52
1300 0.35 0.42 0.30
1400 0.21 0.25 0.17
1600 0.08 0.09 0.06

Table 7.2: Total cross-section for b∗ → Wt in the mass range under investigation for couplings fg = fL = fR = 1,
and cross-section when the renormalisation and factorisation scale is varied down and up by a factor two. These
variations are done separately for the up and down case.

MB′ [GeV] σ(B′ → Wt) [fb]
λ = 2 λ = 3 λ = 4

500 438 — —
600 226 249 —
700 104 169 9.5
800 52 97 95
900 28 54 69

1000 15 30 43
1200 4.8 10.2 16

Table 7.3: Cross-section for the process B′ → Wt production for several different B′ masses and coupling values
λ. The branching fraction is taken into account here.

7.2.1 Bayesian approach

In the Bayesian approach used here, we use Gaussian priors, fN (θi; 0, 1), on the various nuisance para-
meters θi and a flat prior, π(µ), on the signal strength. Using (5.2), (5.7), and (5.16) the marginalised
posterior p.d.f. of the signal strength can be written as

L(µ|~D) ∝
∫
θ
L(µ, θ) π(µ)

∏
i

fN (θi; 0, 1) (7.1)

Here the Poisson likelihood is a function of the signal strength and different nuisance parameters. As
mentioned in earlier chapters, the nuisance parameters contain information about all systematic and
statistical uncertainties. The scale factors of the background processes are also treated as nuisance
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parameters in the Bayesian approach.

L(µ, θ) =

bins∏
k

Ek
Nk e−Ek

Nk!
(7.2)

Ek ≡ Ek(µ, θ) = µEsignal
k (θ) +

bkgs.∑
j

E j
k(θ) (7.3)

We use binned distributions of the discriminant to calculate the likelihood. These distributions are shown
in Figures 7.1-7.3. The value of the likelihood is calculated using Histfactory and the marginalised
posterior PDF is computed using BAT. E j

k(θ) is estimated for arbitrary θi using morphing algorithms
of Histfactory as illustrated in Section 6.2. We use one Markov chain with O(106) iterations for
computing the marginalised posterior. Subsequently, we compute the one-sided Bayesian 95% C.L.
upper limit, µobs

up , using the equation ∫ µobs
up

0
L(µ) dµ = 0.95 (7.4)

For extracting the expected limits, we fit to Asimov data [65]. The Asimov dataset is defined in such a
manner that if we fit to it, the estimated values are the true expected values of the parameters of interest.
This procedure helps us to reduce the computation time in a drastic manner. The errors on the expected
limits are computed using

µup±N = µmed
up

(
Φ−1(1 − 0.05Φ(±N)) ± N

)
(7.5)

where N = 1, 2 corresponds to 1, 2 σ error bands respectively [66]. Here Φ(x) denotes the Gaussian
cumulative distribution function (c.d.f.) and Φ−1(y) is the Gaussian quantile and it can be written as the
inverse of the Gaussian c.d.f..

7.2.2 Frequentist approach

We use BILL fitter to compute the CLs limit as defined in Section 5.5.1. We generate 10000 pseudoex-
periments to find the upper limits. The negative log likelihood fit method is used for fitting the signal
and background templates, as described in Section 6.4. The fit incorporates the systematic uncertainties,
but they are not profiled. The templates used for the fit are same for both the Bayesian and frequentist
approach.

7.3 Systematic uncertainties

In this section, we would describe the different systematic uncertainties that have been considered in our
analysis. The uncertainties are chosen according to the top group recommendations [67]. Most of the
systematic uncertainties were independent of the signal or background process, but uncertainties like
generator systematic and normalisation uncertainties are process dependent.

• Luminosity uncertainty The uncertainty on the integrated luminosity is 2.8%. We use a rate
uncertainty to account for this variation.

• Lepton energy scale and resolution: For estimating the scale uncertainty, the lepton pT is scaled
by ±1σ and the event selection is re-applied for the respective variations. For the resolution un-
certainty, we smear the lepton pT and re-apply the event selection. The variation in the acceptance
gives us a measure of the uncertainty.
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7.3 Systematic uncertainties

• Jet energy resolution (JER) This uncertainty is calculated by smearing the jet pT. It gives us a
measure of the variation of the selection efficiency of jets.

• Jet vertex fraction (JVF) This is the uncertainty associated with the jet vertex fraction cut in a
given analysis. Jets having pT < 50 GeV and |η| < 2.4 contribute to this uncertainty.

• Jet energy scale (JES) This is one of the major sources of uncertainty for many top-quark physics
analyses. It depends on the η and pT of the reconstructed jet. Multiple factors contribute to this
uncertainty, so we need different sub-components to describe this uncertainty accurately. The
different uncertainties used are

– Statistical uncertainty. (JesEffectiveStat)

– Modelling uncertainty. (JesEffectiveModel)

– Uncertainty from the detector components. (JesEffectiveDet)

– Uncertainty from detector sources and modelling (JesEffectiveMix)

– η inter-calibration uncertainty. (modelling and statistical)

– Uncertainties arising from pileup.

– Single particle uncertainty.

– Uncertainty from response of b-jet. (BJesUnc)

• Tagging uncertainties These uncertainties arise from the variation in efficiency of tagging the
different jets. We have three kinds of uncorrelated tagging uncertainties, namely b-tag, c-tag and
mistag. They represent the tagging uncertainties corresponding to b-jets, c-jets and other jets.
They are computed by measuring the change in tagging efficiencies while we vary the η, pT, and
flavour-dependent scale factors of the jets.

• Large-R jet energy and mass scale Since our analysis uses large-R jets, we consider the scale
uncertainties arising from the energy and mass of these jets separately.

• Large-R jet energy and mass resolution We also consider the resolution uncertainties for the
mass and energy of these jets separately.

• Parton distribution function This uncertainty comes from the variation in acceptance due to dif-
ferent choice of parton distribution functions. We have modelled the uncertainty by re-weighting
the top pair, Wt, and the signal MC samples according to the momentum distributions of the
colliding partons, as predicted by three different sets of parton distribution functions.

• Initial and final state radiation (ISR/FSR) These uncertainties reflect the effect of varying radi-
ation in the initial or final state. As it is done in other top group analyses, these uncertainties are
calculated using certain Alpgen and Pythia samples.

• Generator dependence These uncertainties account for the variation in acceptance due to a dif-
ferent choice of Monte Carlo generators.

• Parton shower modelling We consider the uncertainties coming from modelling uncertainties of
the parton shower.
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• Normalisation uncertainties Various normalisation uncertainties of the backgrounds are taken
into account. We assign rate uncertainties for cross-section uncertainties. These uncertainties are
log-Gaussian i.e. they are Gaussian distributions of the log of the parameter. This ensures that the
post-fit yields of the backgrounds are not negative. In addition to these uncertainties, we use an
extra rate uncertainty associated with extra jets, called Berends scaling. For the dilepton channel,
we assign a 24% uncertainty in the one and two jet bins. In the single-lepton channel we use a
34% uncertainty for the three jet bin and a 24% uncertainty for the two jet bin. The cross-section
uncertainties used for the different backgrounds are shown in the following table [67].

Background Cross-section uncertainty
tt̄ +5.7%/ − 5.3%

W+jets ±4%
Wt ±6.8%

Z+jets ±4%
Diboson ±5%

Single top ±3.9%
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Figure 7.1: Distributions of the discriminant for b∗ in the single-lepton channel. The signal templates have been
scaled up, but they are normalised to 1 pb in the fit. The ratio plot shows the comparison between data and Monte
Carlo. The uncertainty band denotes the statistical uncertainty. Small backgrounds like the diboson, other single
top-quark backgrounds, and fakes are merged in the figure, but treated separately in the fit.
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Figure 7.2: Distributions of the discriminant for B′ in the single-lepton channel. The signal templates have been
scaled up, but they are normalised to 1 pb in the fit. The ratio plot shows the comparison between data and Monte
Carlo. The uncertainty band denotes the statistical uncertainty. Small backgrounds like the diboson, other single
top-quark backgrounds, and fakes are merged in the figure, but treated separately in the fit.
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Figure 7.3: Distributions of the discriminant for B′ and b∗ in the dilepton channel. The signal templates have been
scaled up, but they are normalised to 1 pb in the fit. The ratio plot shows the comparison between data and Monte
Carlo. The uncertainty band denotes the statistical uncertainty. Small backgrounds like the diboson, other single
top-quark backgrounds, and fakes are merged in the figure, but treated separately in the fit.
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CHAPTER 8

Results

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree
with experiment, it’s wrong.” -- Richard P. Feynman

In this chapter the results obtained in our analysis will be presented. The statistical analysis was
performed for both the single-lepton and dilepton channels as defined in Chapter 4. We first test our
background-only hypothesis against our signal-plus-background hypothesis. Since this procedure can-
not rule out the background hypothesis, we subsequently set limits on the signal strength. The signal
strength and its likelihood has been defined in Chapter 6. The hypothesis testing was done for the signal
regions. The limits are calculated by fitting in all signal and control regions for a given channel. The
signal and control regions used are shown in Table 7.1.

8.1 BumpHunter results

8.1.1 Single-lepton channel

We test our background-only-hypothesis with BumpHunter in each of the signal regions. The test gives
us a global p-value, as defined in (6.1), and we quote the corresponding significance σ using (5.23). In
our analysis, we use 20000 pseudoexperiments while running BumpHunter. We present the distribution
of the control region fitted Monte Carlo (the measure of our background-only hypothesis) versus the data
in the signal region in Figures 8.1a and 8.2a. We also show a distribution of the bin-by-bin significance
in these plots. The corresponding distributions of the BumpHunter test statistic, as defined in (6.1),
which are used for the calculation of the global p-value is shown in Figures 8.1b and 8.2b. The global
p-value and significance which was obtained for the hadronic top and hadronic W signal regions for
both b∗ and B′ is quoted in Table 8.1. The significance obtained in the different signal regions is quite
low, thus indicating the absence of any signal.

b∗ SR p-value σ

Hadronic top 0.19 0.87
Hadronic W 0.44 0.14

B′ SR p-value σ

Hadronic top 0.09 1.34
Hadronic W 0.49 0.01

Table 8.1: p-value and significance σ in the signal regions of the single-lepton channel for b∗ and B′

8.1.2 Dilepton channel

The aforementioned analysis is also performed for both signal regions of the dilepton channel, the 1-jet-
1tag region and the 2-jet-1tag region. Figures 8.3a and 8.4a shows the control region fitted background
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8.1 BumpHunter results

b∗ SR p-value σ

1-jet 1-tag 0.40 0.27
2-jet 2-tag 0.50 0.00

B′ SR p-value σ

1-jet 1-tag 0.35 0.38
2-jet 2-tag 0.24 0.70

Table 8.2: p-value and significance σ in the signal regions of the dilepton channel for b∗ and B′

versus the data including a distribution of bin-by-bin significance. Figures 8.3b and 8.4b shows the
corresponding distributions of the BumpHunter statistic. The global p-value and significance for the
respective signal regions is quoted in Table 8.2. The significance obtained in the different signal regions
of the dilepton channel is also small, thus indicating the absence of any signal.
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(b) BumpHunter test-statistic distribution

Figure 8.1: Figures 8.1a show the data versus CR fitted background for the hadronic top and hadronic W signal
regions for B′. The significance plots illustrate the bin-by-bin significance. Figures 8.1b show a distribution of the
BumpHunter test statistic for the pseudoexperiments performed by varying the background within its error range.
The blue arrow denotes the value of the test statistic for the control region fitted background compared with the
data.
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(b) BumpHunter test-statistic distribution

Figure 8.2: Figures 8.2a show the data versus CR fitted background for the hadronic top and hadronic W signal
regions for B′. The significance plots illustrate the bin-by-bin significance. Figures 8.2b show a distribution of the
BumpHunter test statistic for the pseudoexperiments performed by varying the background within its error range.
The blue arrow denotes the value of the test statistic for the control region fitted background compared with the
data.
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(a) Data versus CR fitted MC and bin-by-bin significance
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(b) BumpHunter test-statistic distribution

Figure 8.3: Figures 8.3a show the data versus CR fitted background for the hadronic top and hadronic W signal
regions for B′. The significance plots illustrate the bin-by-bin significance. Figures 8.3b show a distribution of the
BumpHunter test statistic for the pseudoexperiments performed by varying the background within its error range.
The blue arrow denotes the value of the test statistic for the control region fitted background compared with the
data.
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(b) BumpHunter test-statistic distribution

Figure 8.4: Figures 8.2a show the data versus CR fitted background for the hadronic top and hadronic W signal
regions for B′. The significance plots illustrate the bin-by-bin significance. Figures 8.2b show a distribution of the
BumpHunter test statistic for the pseudoexperiments performed by varying the background within its error range.
The blue arrow denotes the value of the test statistic for the control region fitted background compared with the
data.
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8.2 Nuisance parameters

After performing our likelihood fit, we estimate the effect the different nuisance parameters (NPs).
In our analysis, both systematic uncertainties and normalisation uncertainties are treated as nuisance
parameters. We assume a Gaussian prior for each of the nuisance parameter, θi. So we expect the
posterior distributions of the NPs to have similar shapes. We study the posterior distributions of the
nuisance parameters to find their effect on our fit. We perform a background-only fit to Asimov data
and real data to find the expected and observed constraints, respectively, of the nuisance parameters.
The expected effect of the nuisance parameters on the fit for b∗ in the combined channel is shown in
Figure 8.5. The summary of the observed nuisance parameters for b∗ in the single-lepton, dilepton and
the combined channels is shown in Figures 8.6-8.8. The observed effect of the nuisance parameters for
B′ in the combined channel is illustrated in Figure 8.9. Similar plots for other channels can be found in
Appendix A.

In the left part of these plots, we have plotted the median of the posterior distribution of θi and taken
the ±1σ quantiles of these distribution as the respective errors. The y-axis denotes the uncertainties
that are considered in our analysis. They have been described in Section 7.3. The NPs having a suf-
fix xsec denote the cross-section normalisation uncertainties. The suffix berends denote the Berends
scaling normalisation uncertainty. NPs having the prefix Fat denote uncertainties arising from large-R
jets. NPs containing the phrase Jes represent systematic uncertainties arising from the jet energy scale.
The uncertainties containing the phrase tag depict tagging uncertainties. The generator systematics are
denoted by the NPs having the prefix Gen. The PDF and PS NPs are the parton distribution function
and parton shower uncertainties respectively. NPs having suffix el or mu denote uncertainties arising
from electrons or muons. The wjets_flavor uncertainty is a 10% rate uncertainty assigned to account for
the flavour composition of the W+jets. The green band is the ±1σ variation of a unit Gaussian. When
we fit to Asimov data, we set a prefit value of θi = 0, so we expect most nuisance parameters to be unit
Gaussian after the fit, as observed in Figure 8.5.

The NPs which are constrained have posteriors with width less than unity. Another implication of
this constraint is that their posterior distributions are not centred i.e. they have a median away from
zero. For example, in Figure 8.5 the wjets_berends4 NP (Berends scaling uncertainty) has a median
away from zero and a width less than unity implying that it is constrained and thus has an effect on the
fit. Similarly, if we look at the btag0 NP (b-tagging systematic) we see that it resembles a unit Gaussian,
thus implying the fact that it has no effect on the fit. For the fit to observed data, we expect a larger
variation than in the expected case because there are no prefit assumptions in the fit to data, as it can
be seen in Figures 8.6-8.9. If we compare the expected and observed nuisance parameter distributions
we observe a reasonable agreement between the nature of the constraints of the NPs. For example, we
observe that the wjets_berends4 uncertainty is constrained in both cases, as seen in Figures 8.5 and 8.8.
When we compare the NPs for B′ and b∗ we observe similar trends in the constraints of the NPs.
Figures 8.6-8.8 show the observed nuisance parameter distributions for the single-lepton, dilepton and
combined channels. We clearly observe the fact that the NPs in the combined channel is more sensitive
to the single-lepton channel than the dilepton channel.

The plot on the right side of Figures 8.5-8.9 illustrates the relative impact of the respective nuisance
parameters on the signal strength of different signal hypotheses of varying masses. We define the re-
lative impact of a nuisance parameter θi on the signal strength µ as posterior cov(θi, µ)/σ(µ), where
posterior cov(θi, µ) is the covariance of the posterior distributions of θi and µ and σµ is the standard de-
viation of the posterior distribution of the signal strength µ. The values of the relative impact for all the
NPs were calculated by using the posterior distributions, after fitting our likelihood to data for different
masses of b∗/B′.
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Figure 8.5: Expected nuisance parameter distributions for b∗ in the combined fit of the single-lepton and dilepton
channels. The left part visualises the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter
before and after the fit of the background-only hypothesis. The right part visualizes the relative impact (as defined
in the text) on each of the signal hypotheses. Signals with lower mass are denoted by reddish whereas signals
with heavier masses by bluish colours.
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Figure 8.6: Observed nuisance parameter distributions for b∗ in the single-lepton channel. The left part visualises
the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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Figure 8.7: Observed nuisance parameter distributions for b∗ in the dilepton channel. The left part visualises
the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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Figure 8.8: Observed nuisance parameter distributions for b∗ in the combined fit of the single-lepton and dilepton
channel. The left part visualises the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter
before and after the fit of the background-only hypothesis. The right part visualizes the relative impact (as defined
in the text) on each of the signal hypotheses. Signals with lower mass are denoted by reddish whereas signals
with heavier masses by bluish colours.
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Figure 8.9: Observed nuisance parameter distributions for B′ in the combined fit of the single-lepton and dilepton
channel. The left part visualises the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter
before and after the fit of the background-only hypothesis. The right part visualizes the relative impact (as defined
in the text) on each of the signal hypotheses. Signals with lower mass are denoted by reddish whereas signals
with heavier masses by bluish colours.
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8.3 Pre-and post-fit background distributions

We fit our background-only hypothesis to the data in both signal and control regions to get an estimate
of the post-fitted backgrounds. We get the yields Ei j for process i in channel j by calculating the
expectation value of the corresponding posterior distributions. The errors on these yields are taken to be
standard deviation of the posterior distributions. These errors give us a measure of the total systematic
and statistical uncertainties. We calculate a β factor, defined as the ratio of prefit and postfit yields for
Ei j, for all the backgrounds in all the signal and control regions. These yields along with the total errors
and β factors are shown in Tables 8.3-8.6. In our analysis the major backgrounds are the top-pair, Wt
and the other single top-quark backgrounds (both of them are combined in the Table 8.3-8.6), diboson
backgrounds and fakes. The β factors of the major backgrounds are close to one.

We plot these pre and post-fit yields, along with their respective errors in Figures 8.13-8.16. These
distributions are for the discriminant used for fitting in the respective regions. Since the fit used to
compute the yields is a background-only fit, we expect a reasonable agreement between data and Monte
Carlo simulations. This can be mostly verified in Figures 8.13-8.16. The uncertainty bands in these
plots include the total uncertainty i.e both statistical and systematic uncertainties. The post-fit plots
illustrate how the fit helps us to constrain the total uncertainty. These plots show how the fit affects the
composition of backgrounds having highly constrained normalisation uncertainties. This can be clearly
seen in the case of W+jets in Figure 8.13. These post-fit distributions along with the nuisance parameter
summary plots help us to verify the validity of our fit.

Before fit After fit β

=1-jet =1tag (SR)
tt̄ 1160 1165±36 1.00±0.03
Single t 236 253±26 1.07±0.11
WW,WZ,ZZ,Z+jets 13 13±4 1.03±0.32
Fakes 5 6±4 1.12±0.74
All backgrounds 1414 1436±33

=2-jet =1tag (SR)
tt̄ 1417 1409±33 0.99±0.02
Single t 106 97±10 0.91±0.09
WW,WZ,ZZ,Z+jets 2 3±2 1.26±0.69
Fakes 2 2±1 1.00±0.74
All backgrounds 1527 1511±34

=2-jet =2tag (CR)
tt̄ 4287 4253±65 0.99±0.02
Single t 125 106±20 0.85±0.16
WW,WZ,ZZ,Z+jets 1 1±0 1.19±0.68
Fakes 3 4±3 1.13±0.82
All backgrounds 4417 4364±64

Table 8.3: Yields for b∗ selection in the dilepton channel before and after fit of the background-only hypothesis to
real data. The numbers for the major backgrounds are also shown separately. β is the ratio of the post- over pre-fit
yields. The quoted error is the total uncertainty, calculated as explained in the text.
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Before fit After fit β

=1-jet =1tag (SR)
tt̄ 2441 2485±44 1.02±0.02
Single t 286 276±23 0.96±0.08
WW,WZ,ZZ,Z+jets 16 15±5 0.90±0.33
Fakes 3 6±4 1.62±1.25
All backgrounds 2747 2780±39

=2-jet =1tag (SR)
tt̄ 1448 1457±34 1.01±0.02
Single t 82 81±9 0.98±0.11
WW,WZ,ZZ,Z+jets 6 5±4 0.80±0.62
Fakes 1 2±2 1.83±1.42
All backgrounds 1537 1545±35

=2-jet =2tag (CR)
tt̄ 4287 4229±67 0.99±0.02
Single t 125 119±19 0.95±0.15
WW,WZ,ZZ,Z+jets 1 1±0 1.16±0.62
Fakes 3 3±3 1.07±0.81
All backgrounds 4417 4352±65

Table 8.4: Yields for B′ selection in the dilepton channel before and after fit of the background-only hypothesis to
real data. The numbers for the major backgrounds are also shown separately. β is the ratio of the post- over pre-fit
yields. The quoted error is the total uncertainty, calculated as explained in the text.
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8.3 Pre-and post-fit background distributions

Before fit After fit β

hadronic top SR
tt̄ 1973 1863±63 0.94±0.03
Single t 363 368±33 1.01±0.09
W+jets 1289 1358±145 1.05±0.11
WW,WZ,ZZ,Z+jets 154 232±97 1.51±0.63
Fakes 62 62±38 1.00±0.61
All backgrounds 3841 3883±72

hadronic W SR
tt̄ 3771 3387±115 0.90±0.03
Single t 521 520±40 1.00±0.08
W+jets 1370 1287±123 0.94±0.09
WW,WZ,ZZ,Z+jets 147 183±47 1.25±0.32
Fakes 118 102±42 0.87±0.35
All backgrounds 5929 5480±73

hadronic top tt̄ CR
tt̄ 259 264±15 1.02±0.06
Single t 47 52±8 1.11±0.16
W+jets 60 74±20 1.24±0.33
WW,WZ,ZZ,Z+jets 18 28±13 1.60±0.76
Fakes 7 14±7 1.98±1.00
All backgrounds 390 433±19

hadronic W tt̄ CR
tt̄ 2331 2155±49 0.92±0.02
Single t 142 139±12 0.98±0.08
W+jets 73 80±18 1.10±0.25
WW,WZ,ZZ,Z+jets 13 18±6 1.35±0.41
Fakes 12 13±10 1.16±0.83
All backgrounds 2573 2406±47

hadronic top W+jets CR
tt̄ 1586 1423±77 0.90±0.05
Single t 350 355±36 1.01±0.10
W+jets 19376 17558±817 0.91±0.04
WW,WZ,ZZ,Z+jets 1558 2142±686 1.38±0.44
Fakes 1395 442±427 0.32±0.31
All backgrounds 24265 21921±148

hadronic W W+jets CR
tt̄ 1420 1233±92 0.87±0.06
Single t 220 215±23 0.97±0.10
W+jets 14162 11839±625 0.84±0.04
WW,WZ,ZZ,Z+jets 1776 2054±580 1.16±0.33
Fakes 946 430±267 0.45±0.28
All backgrounds 18524 15771±132

Table 8.5: Yields for b∗ selection in the single-lepton channel before and after fit of the background-only hypo-
thesis to real data. The numbers for the major backgrounds are also shown separately. β is the ratio of the post-
over pre-fit yields. The quoted error is the total uncertainty, calculated as explained in the text.
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Chapter 8 Results

Before fit After fit β

hadronic t SR
tt̄ 521 483±27 0.93±0.05
Single t 87 94±13 1.09±0.15
W+jets 237 217±39 0.92±0.17
WW,WZ,ZZ,Z+jets 19 22±7 1.15±0.38
Fakes 17 18±11 1.04±0.64
All backgrounds 881 835±34

hadronic W SR
tt̄ 810 746±34 0.92±0.04
Single t 123 125±13 1.02±0.11
W+jets 233 152±27 0.65±0.11
WW,WZ,ZZ,Z+jets 28 30±11 1.07±0.40
Fakes 24 27±14 1.13±0.56
All backgrounds 1218 1081±35

hadronic t tt̄ CR
tt̄ 77 69±7 0.89±0.09
Single t 14 14±3 1.03±0.23
W+jets 11 11±6 1.01±0.53
WW,WZ,ZZ,Z+jets 2 2±1 0.98±0.42
Fakes 1 3±1 1.72±1.00
All backgrounds 106 99±8

hadronic W tt̄ CR
tt̄ 479 428±18 0.89±0.04
Single t 43 38±5 0.89±0.11
W+jets 12 8±3 0.66±0.22
WW,WZ,ZZ,Z+jets 3 3±1 0.93±0.47
Fakes 3 6±4 1.91±1.30
All backgrounds 541 483±20

hadronic t W+jets CR
tt̄ 422 409±31 0.97±0.07
Single t 83 85±14 1.02±0.17
W+jets 3141 2836±172 0.90±0.05
WW,WZ,ZZ,Z+jets 253 284±79 1.12±0.31
Fakes 286 226±134 0.79±0.47
All backgrounds 4185 3840±76

hadronic W W+jets CR
tt̄ 328 323±27 0.99±0.08
Single t 42 48±11 1.14±0.25
W+jets 2017 1597±134 0.79±0.07
WW,WZ,ZZ,Z+jets 308 333±111 1.08±0.36
Fakes 183 173±68 0.95±0.37
All backgrounds 2879 2475±72

Table 8.6: Yields for B′ selection in the single-lepton channel before and after fit of the background-only hypo-
thesis to real data. The numbers for the major backgrounds are also shown separately. β is the ratio of the post-
over pre-fit yields. The quoted error is the total uncertainty, calculated as explained in the text.
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8.3 Pre-and post-fit background distributions
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Figure 8.10: Pre-and post-fit plots for b∗ in the signal regions of single-lepton channel. The plots on the left are pre-
fit plots and the plots on the right are post-fit plots. The error bands include all uncertainties. Small backgrounds
like the diboson, other single top-quark backgrounds, and fakes are merged in the figure, but treated separately in
the fit.
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Figure 8.11: Pre-and post-fit plots for b∗ in the tt̄ control regions of single-lepton channel. The plots on the left
are pre-fit plots and the plots on the right are post-fit plots. The error bands include all uncertainties. Small
backgrounds like the diboson, other single top-quark backgrounds, and fakes are merged in the figure, but treated
separately in the fit.
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Figure 8.12: Pre- and post-fit plots for b∗ in the W+jets control regions of single-lepton channel. The plots on the
left are pre-fit plots and the plots on the right are post-fit plots. The error bands include all uncertainties. Small
backgrounds like the diboson, other single top-quark backgrounds, and fakes are merged in the figure, but treated
separately in the fit.
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Figure 8.13: Pre-and post-fit plots for b∗ in the dilepton channel. The plots on the left are pre-fit plots and the plots
on the right are post-fit plots. The error bands include all uncertainties. Small backgrounds like the diboson, other
single top-quark backgrounds, and fakes are merged in the figure, but treated separately in the fit.
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Figure 8.14: Pre-and post-fit plots for B′ in the signal regions of single-lepton channel. The plots on the left are pre-
fit plots and the plots on the right are post-fit plots. The error bands include all uncertainties. Small backgrounds
like the diboson, other single top-quark backgrounds, and fakes are merged in the figure, but treated separately in
the fit.
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Figure 8.15: Pre-and post-fit plots for B′ in the tt̄ control regions of single-lepton channel. The plots on the left
are pre-fit plots and the plots on the right are post-fit plots. The error bands include all uncertainties. Small
backgrounds like the diboson, other single top-quark backgrounds, and fakes are merged in the figure, but treated
separately in the fit.
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Figure 8.16: Pre-and post-fit plots for B′ in the W+jets control regions of single-lepton channel. The plots on the
left are pre-fit plots and the plots on the right are post-fit plots. The error bands include all uncertainties. Small
backgrounds like the diboson, other single top-quark backgrounds, and fakes are merged in the figure, but treated
separately in the fit.
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Chapter 8 Results

8.4 Limits

The results obtained from hypothesis testing show that the background-only hypothesis cannot be re-
jected. So we set limits on the signal strength of b∗/B′ for different mass hypotheses. For b∗ we set
limits by repeating the fitting procedure for mb∗ ranging from 600 to 1600 GeV. The mass points for
which the limits were set are 600 GeV, 800 GeV, 1000 GeV, 1200 GeV, 1300 GeV, 1400 GeV, and 1600
GeV. For B′ we used signals having a mass of 500 GeV, 600 GeV, 700 GeV, 800 GeV, 900 GeV, 1000
GeV, and 1200 GeV. The 95% C.L. limits on the production cross-section times branching ratio were
set for the single-lepton channel, dilepton channel and the combined channels. Using these limits we
extract a mass limit for the given particle. The mass limit for a hypothetical particle is defined as the
mass for which the theory production cross-section equals the observed production cross-section and the
observed cross-section is greater or lesser than the theoretical cross-section for decreasing or increasing
masses respectively. The expected and observed 95% C.L. limit on the production cross-section times
branching ratio as a function of the mass of b∗/B′ is shown in Figures 8.17-8.19. The figures show the
limits for the single-lepton, dilepton and combined channels. The green and yellow bands represent the
±1, 2σ error band respectively. The observed limits are within ±2σ error bands of the expected limit.
For computing the expected mass limit for b∗ in the single-lepton and the combined channel, we had to
extrapolate our expected limits beyond 1600 GeV due to the unavailability of signal Monte Carlo sim-
ulations beyond 1600 GeV. We observe that the combined limits is more sensitive to the single-lepton
limit than the dilepton one. The mass limits for b∗ is shown in Table. 8.7. We could not set a mass limit
on B′ because of its extremely low theoretical cross-sections. We repeat the similar procedure with a
frequentist method, described in Chapter 7, in the single-lepton and the dilepton channels. to compare
with the results obtained by the Bayesian procedure. The mass limits for b∗ is quoted in Table 8.8. The
corresponding limits as a function of signal mass is shown in Figures 8.20 and 8.21. We see that the
Bayesian and frequentist limits are comparable within an error range of 100-150 GeV. We can explain
this difference by the difference in the treatment of the nuisance parameters by each of these methods.
The Bayesian approach included profiling whereas the the frequentist approach did not. The exact val-
ues of the 95% C.L. limits on the production cross-section for different mass hypotheses of the signal
are given in Appendix B.

Expected [GeV] Observed [GeV]
Single-lepton 1660 1520

Dilepton 1265 1220
Combined 1660 1500

Table 8.7: Expected and observed mass limits for b∗ computed using Bayesian method

Expected [GeV] Observed [GeV]
Single-lepton 1480 1410

Dilepton 1340 1320

Table 8.8: Expected and observed mass limits for b∗ computed using frequentist method
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Figure 8.17: Observed and expected limits for b∗ and B′ in the single-lepton channel computed using Bayesian
method.
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Figure 8.18: Observed and expected limits for b∗ and B′ in the dilepton channel computed using Bayesian method.

 [GeV]
b*

m

600 800 1000 1200 1400 1600

 t
W

) 
[p

b
]

→
 b

* 
→

(p
p
 

σ
9
5
%

 C
.L

. 
lim

it
 o

n
 

­110

1

10

Expected limit
σ 1±Expected 
σ 2±Expected 

Observed limit
b* Theory

combined
b*

 [GeV]B’m

500 600 700 800 900 1000 1100 1200

 t
W

) 
[p

b
]

→
 B

’ 
→

(p
p
 

σ
9
5
%

 C
.L

. 
lim

it
 o

n
 

­110

1

10

Expected limit
σ 1±Expected 
σ 2±Expected 

Observed limit
=2λB’ Theory 
=3λB’ Theory 
=4λB’ Theory combined

B’

Figure 8.19: Observed and expected limits for b∗ and B′ in the combined channels computed using Bayesian
method.
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Figure 8.20: Observed and expected limits for b∗ and B′ in the single-lepton channel computed using frequentist
method.
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Figure 8.21: Observed and expected limits for b∗ and B′ in the dilepton channel computed using frequentist
method.
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CHAPTER 9

Conclusion

“Nature is our kindest friend and best critic in experimental science if we only allow her intimations to
fall unbiased on our minds.” -- Michael Faraday

In this thesis, the statistical methods used in the search for two vector-like-quarks b∗ and B′ was
presented. We considered the decay, b∗/B′ → Wt. Two decay modes of the Wt final state, namely
the single-lepton decay mode and the dilepton decay mode was used for the search. This search was
conducted using the

√
s = 8 TeV data of proton-proton collisions taken at the ATLAS detector in 2012.

The statistical analysis had two major steps. In the first step, we tried to look for any significant excess
of data over background. After being unable to find any significant excess, we set 95% C.L. limits on
the signal strength for varying mass hypotheses of the signal in the second step. Subsequently, we set
an expected and observed mass limit on b∗ and B′.

In the first part of the statistical analysis, we used a statistical package called BumpHunter to valid-
ate our background-only (Standard Model) hypothesis against our signal-plus-background hypothesis
(Standard Model-plus-b∗/B′). In order to do this, we looked for any significant excess of data over
background. We used control region fitted Monte Carlo simulations as a measure of our background.
This package used a hypertest to scan the whole space of the parameter of interest. This ensured that
we successfully avoided the “look-elsewhere” effect. In our analysis we scanned over the space of the
discriminant. We used the mass of the signal in the single-lepton case and the transverse mass of the
signal in the dilepton case as our discriminant. The results obtained by BumpHunter show us that we do
not have any significant excess of data over background in the respective signal regions, thus confirming
the background only (Standard Model) hypothesis.

The natural choice after the first part was to set limits on the signal strength. We use the cross-section
times branching fraction of the process pp→ b∗/B′ → Wt as our signal strength, µ. We used likelihood
fits to do the limit setting. We used a Bayesian method to set limits on µ. We performed our fit in
the single-lepton, dilepton, and the combined channel. The presence of four signal regions and five
control regions made the analysis quite challenging. We used a tool called Histfactory to calculate
the combined likelihood which included the information about all our uncertainties. We integrated over
the whole parameter space of all the nuisance parameters to get the posterior probability distribution
function (P.D.F.) of µ. This integration was done by the Bayesian Analysis Toolkit (BAT). BAT uses
Markov Chain Monte Carlo to perform the integration. This P.D.F. was used to compute the limit on
µ. We repeated this procedure for different mass hypotheses of the signal to extract a mass limit. A
likelihood fit to the background only hypothesis was also performed to get an estimate of the constraints
of the various nuisance parameters. This fit also illustrated how the fit constrains our uncertainties.
Since we do not see any significant excess of data over background, we expect a reasonable agreement
between data and Monte Carlo simulations of the background. The distributions obtained before and
after the fitting procedure presented in the last chapter show this, thus illustrating the fact that our fit
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works correctly. We also use a simple frequentist likelihood fit to compute CLs limit on the signal
strength in the single-lepton and dilepton channels. We use a tool called Bill fitter to implement this
fit. We compare these limits with our Bayesian limits. For the combined limit we quote the Bayesian
limit.

After computing the expected and observed limits, we were successful in excluding b∗ below a certain
mass, but due to the low theoretical cross-sections of B′ we were unable to set mass limits for B′. We
see that the Bayesian and frequentist limits were comparable within a range of 100-150 GeV. This can
be explained by the different treatment of systematic uncertainties by the two approaches. The Bayesian
approach included profiling whereas the frequentist approach did not. After setting limits we see that
b∗ can be excluded upto a mass of 1.5 TeV. Previously ATLAS had excluded b∗ for masses up to 870
GeV [68]. So we see that this analysis was successful in improving the limits by a factor 1.7. The
statistical methods developed during this thesis can be used in future searches for particles predicted by
other Beyond the Standard Model theories during the second run of the Large Hadron Collider.

72



APPENDIX A

Nuisance parameters summary plots
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Figure A.1: Expected nuisance parameter distributions for b∗ in the single-lepton channel. The left part visualises
the median and ±1σ quantiles of posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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]|µ[σ]/µ,θposterior |cov[

0.05 0.1

θ

­2 ­1 0 1 2

sc_soft
res_soft

musc
mums_res
muid_res

mu_trigSF
mu_recSF

mu_idSF
mistag

jvf
jer
jeff

flavor_response
flavor_comp

fakes
el_trigSF
el_recSF

el_idSF
ees
eer

ctautag_extrpl
ctautag

btag_extrpl
btag5
btag4
btag3
btag2
btag1
btag0

SinglePart
PunchThrough

Pileup_Rho
Pileup_Pt

Pileup_OffsetNPV
Pileup_OffsetMu

PS
PDF

JesEffectiveStat4
JesEffectiveStat3
JesEffectiveStat2
JesEffectiveStat1

JesEffectiveModel4
JesEffectiveModel3
JesEffectiveModel2
JesEffectiveModel1

JesEffectiveMix4
JesEffectiveMix3
JesEffectiveMix2
JesEffectiveMix1
JesEffectiveDet3
JesEffectiveDet2
JesEffectiveDet1

GenTt
EtaIntercalibrationTotalStat

EtaIntercalibrationModel
DSDR

BJesUnc
lumi

ztautau_norm
zjets_xsec

zjets_berends2
zjets_berends1

wt_xsec
ttbar_xsec

diboson_xsec
diboson_berends2
diboson_berends1

Figure A.2: Expected nuisance parameter distributions for b∗ in the dilepton channel. The left part visualises
the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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Figure A.3: Expected nuisance parameter distributions for B′ in the single-lepton channel. The left part visualises
the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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Figure A.4: Expected nuisance parameter distributions for B′ in the dilepton channel. The left part visualises
the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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Figure A.5: Expected nuisance parameter distributions for B′ in the combined fit of the single-lepton and dilepton
channels. The left part visualises the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter
before and after the fit of the background-only hypothesis. The right part visualizes the relative impact (as defined
in the text) on each of the signal hypotheses. Signals with lower mass are denoted by reddish whereas signals
with heavier masses by bluish colours.
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Figure A.6: Observed nuisance parameter distributions for B′ in the single-lepton channel. The left part visualises
the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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Figure A.7: Observed nuisance parameter distributions for B′ in the dilepton channel. The left part visualises
the median and ±1σ quantiles of the posterior p.d.f.s on each nuisance parameter before and after the fit of the
background-only hypothesis. The right part visualizes the relative impact (as defined in the text) on each of the
signal hypotheses. Signals with lower mass are denoted by reddish whereas signals with heavier masses by bluish
colours.
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95% C.L. limits on production cross section of
signal

mass [GeV] 600 800 1000 1200 1300 1400 1600
combined 1.07 0.38 0.17 0.11 0.09 0.07 0.06
single-lepton 1.23 0.41 0.18 0.12 0.09 0.08 0.06
dilepton 2.22 1.03 0.63 0.44 0.42 0.41 0.43

Table B.1: 95% C.L. expected upper limits for σ(pp→ b∗ → tW) computed using Bayesian method in picobarns.

mass [GeV] 600 800 1000 1200 1300 1400 1600
combined 1.05 0.26 0.27 0.20 0.17 0.14 0.11
single-lepton 1.36 0.27 0.28 0.19 0.16 0.13 0.11
dilepton 1.81 0.82 0.69 0.55 0.55 0.54 0.62

Table B.2: 95% C.L. observed upper limits for σ(pp→ b∗ → tW) computed using Bayesian method in picobarns.

mass [GeV] 500 600 700 800 900 1000 1200
combined 5.13 1.43 0.71 0.45 0.30 0.22 0.11
single-lepton 6.75 1.67 0.81 0.50 0.31 0.23 0.11
dilepton 8.60 4.64 2.68 1.73 1.31 1.01 0.71

Table B.3: 95% C.L. expected upper limits on σ(pp→ B′) computed using Bayesian method in picobarns.

mass [GeV] 500 600 700 800 900 1000 1200
combined 4.43 1.82 0.56 0.25 0.14 0.15 0.17
single-lepton 5.39 2.56 0.86 0.31 0.16 0.16 0.16
dilepton 6.60 2.84 1.48 1.04 0.98 0.94 0.85

Table B.4: 95% C.L. observed upper limits on σ(pp→ B′) computed using Bayesian method in picobarns.
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mass [GeV] 600 800 1000 1200 1300 1400 1600
single-lepton 1.89 1.23 0.44 0.23 0.19 0.15 0.12
dilepton 1.96 0.84 0.45 0.32 0.32 0.30 0.33

Table B.5: 95% C.L. expected upper limits for σ(pp → b∗ → tW) computed using frequentist method in pico-
barns.

mass [GeV] 600 800 1000 1200 1300 1400 1600
single-lepton 2.63 1.23 0.57 0.32 0.25 0.20 0.15
dilepton 1.57 0.52 0.34 0.32 0.28 0.28 0.32

Table B.6: 95% C.L. observed upper limits for σ(pp → b∗ → tW) computed using frequentist method in pico-
barns.

mass [GeV] 600 700 800 900 1000 1200
single-lepton 2.05 1.10 0.91 0.53 0.39 0.20
dilepton 3.62 2.53 1.57 1.19 0.84 0.55

Table B.7: 95% C.L. expected upper limits on σ(pp→ B′) computed using frequentist method in picobarns.

mass [GeV] 600 700 800 900 1000 1200
single-lepton 2.85 1.14 0.75 0.39 0.28 0.20
dilepton 3.32 1.90 1.28 1.02 0.90 0.65

Table B.8: 95% C.L. observed upper limits on σ(pp→ B′) computed using frequentist method in picobarns.
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